Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Aug 15;16(16):5057–5068. doi: 10.1093/emboj/16.16.5057

The steady-state level of mRNA from the Ogura cytoplasmic male sterility locus in Brassica cybrids is determined post-transcriptionally by its 3' region.

M Bellaoui 1, G Pelletier 1, F Budar 1
PMCID: PMC1170140  PMID: 9305647

Abstract

We have investigated the control of the expression of three different configurations of the mitochondrial gene orf138, whose expression is correlated with Ogura cytoplasmic male-sterility in rapeseed cybrids. These configurations, termed Nco2.5/13S, Nco2.7/13F and Bam4.8/18S, specific to the 13S (sterile), 13F (fertile) and 18S (sterile) cybrids respectively, have the same 5' regions but different 3' regions. The orf138 transcript from Bam4.8/18S is 10-fold more abundant than the one from Nco2.5/13S, while no orf138 transcript from Nco2.7/13F accumulates. However, transcriptional activity measurements show that the rate of transcription is equivalent for the three configurations. These results strongly suggest that the steady-state level of mRNA from the orf138 locus is determined post-transcriptionally, most likely by its 3' region. To determine the role of these 3' regions, we have established an in vitro decay and processing system. In the presence of rapeseed mitochondrial lysate, synthetic RNAs corresponding to the 3' region of the Nco2.7/13F transcript are, as expected, less stable than RNAs corresponding to the 3' regions of the Nco2.5/13S and Bam4.8/18S transcripts. We have also observed in vitro processing of synthetic RNAs at the sites corresponding to the 3' ends of the natural mRNAs from Nco2.5/13S and Bam4.8/18S. Further analysis of the role of these 3' regions in in vitro RNA stability should help us to better understand post-transcriptional control in plant mitochondria.

Full Text

The Full Text of this article is available as a PDF (657.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binder S., Brennicke A. Transcription initiation sites in mitochondria of Oenothera berteriana. J Biol Chem. 1993 Apr 15;268(11):7849–7855. [PubMed] [Google Scholar]
  2. Binder S., Schuster W., Grienenberger J. M., Weil J. H., Brennicke A. Genes for tRNA(Gly), tRNA(His), tRNA(Lys), tRNA(Phe), tRNA(Ser) and tRNA(Tyr) are encoded in Oenothera mitochondrial DNA. Curr Genet. 1990 Apr;17(4):353–358. doi: 10.1007/BF00314884. [DOI] [PubMed] [Google Scholar]
  3. Bland M. M., Levings C. S., 3rd, Matzinger D. F. The tobacco mitochondrial ATPase subunit 9 gene is closely linked to an open reading frame for a ribosomal protein. Mol Gen Genet. 1986 Jul;204(1):8–16. doi: 10.1007/BF00330180. [DOI] [PubMed] [Google Scholar]
  4. Brown G. G., Auchincloss A. H., Covello P. S., Gray M. W., Menassa R., Singh M. Characterization of transcription initiation sites on the soybean mitochondrial genome allows identification of a transcription-associated sequence motif. Mol Gen Genet. 1991 Sep;228(3):345–355. doi: 10.1007/BF00260626. [DOI] [PubMed] [Google Scholar]
  5. Christianson T., Rabinowitz M. Identification of multiple transcriptional initiation sites on the yeast mitochondrial genome by in vitro capping with guanylyltransferase. J Biol Chem. 1983 Nov 25;258(22):14025–14033. [PubMed] [Google Scholar]
  6. Clayton D. A. Transcription of the mammalian mitochondrial genome. Annu Rev Biochem. 1984;53:573–594. doi: 10.1146/annurev.bi.53.070184.003041. [DOI] [PubMed] [Google Scholar]
  7. Covello P. S., Gray M. W. Sequence analysis of wheat mitochondrial transcripts capped in vitro: definitive identification of transcription initiation sites. Curr Genet. 1991 Aug;20(3):245–251. doi: 10.1007/BF00326239. [DOI] [PubMed] [Google Scholar]
  8. Dean C., Elzen P., Tamaki S., Dunsmuir P., Bedbrook J. Differential expression of the eight genes of the petunia ribulose bisphosphate carboxylase small subunit multi-gene family. EMBO J. 1985 Dec 1;4(12):3055–3061. doi: 10.1002/j.1460-2075.1985.tb04045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dombrowski S., Brennicke A., Binder S. 3'-Inverted repeats in plant mitochondrial mRNAs are processing signals rather than transcription terminators. EMBO J. 1997 Aug 15;16(16):5069–5076. doi: 10.1093/emboj/16.16.5069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Finnegan P. M., Brown G. G. Transcriptional and Post-Transcriptional Regulation of RNA Levels in Maize Mitochondria. Plant Cell. 1990 Jan;2(1):71–83. doi: 10.1105/tpc.2.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grelon M., Budar F., Bonhomme S., Pelletier G. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol Gen Genet. 1994 Jun 3;243(5):540–547. doi: 10.1007/BF00284202. [DOI] [PubMed] [Google Scholar]
  12. Gualberto J. M., Domon C., Weil J. H., Grienenberger J. M. Structure and transcription of the gene coding for subunit 3 of cytochrome oxidase in wheat mitochondria. Curr Genet. 1990 Jan;17(1):41–47. doi: 10.1007/BF00313247. [DOI] [PubMed] [Google Scholar]
  13. Handa H., Bonnard G., Grienenberger J. M. The rapeseed mitochondrial gene encoding a homologue of the bacterial protein Ccl1 is divided into two independently transcribed reading frames. Mol Gen Genet. 1996 Sep 13;252(3):292–302. doi: 10.1007/BF02173775. [DOI] [PubMed] [Google Scholar]
  14. Hanic-Joyce P. J., Gray M. W. Accurate transcription of a plant mitochondrial gene in vitro. Mol Cell Biol. 1991 Apr;11(4):2035–2039. doi: 10.1128/mcb.11.4.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hanic-Joyce P. J., Gray M. W. Processing of transfer RNA precursors in a wheat mitochondrial extract. J Biol Chem. 1990 Aug 15;265(23):13782–13791. [PubMed] [Google Scholar]
  16. Hanic-Joyce P. J., Spencer D. F., Gray M. W. In vitro processing of transcripts containing novel tRNA-like sequences ('t-elements') encoded by wheat mitochondrial DNA. Plant Mol Biol. 1990 Oct;15(4):551–559. doi: 10.1007/BF00017830. [DOI] [PubMed] [Google Scholar]
  17. Kaleikau E. K., André C. P., Walbot V. Structure and expression of the rice mitochondrial apocytochrome b gene (cob-1) and pseudogene (cob-2). Curr Genet. 1992 Dec;22(6):463–470. doi: 10.1007/BF00326411. [DOI] [PubMed] [Google Scholar]
  18. Liu A. W., Narayanan K. K., André C. P., Kaleikau E. K., Walbot V. Co-transcription of orf25 and coxIII in rice mitochondria. Curr Genet. 1992 May;21(6):507–513. doi: 10.1007/BF00351661. [DOI] [PubMed] [Google Scholar]
  19. Liu Z. X., Bergold P. J. Purification of antisera against a trpE fusion protein by negative immunoabsorption. Biotechniques. 1994 Mar;16(3):426–428. [PubMed] [Google Scholar]
  20. Macfarlane J. L., Wahleithner J. A., Wolstenholme D. R. A broad bean mitochondrial atp6 gene with an unusually simple, non-conserved 5' region. Curr Genet. 1990 Jul;18(1):87–91. doi: 10.1007/BF00321121. [DOI] [PubMed] [Google Scholar]
  21. Makaroff C. A., Apel I. J., Palmer J. D. The atp6 coding region has been disrupted and a novel reading frame generated in the mitochondrial genome of cytoplasmic male-sterile radish. J Biol Chem. 1989 Jul 15;264(20):11706–11713. [PubMed] [Google Scholar]
  22. Monéger F., Smart C. J., Leaver C. J. Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene. EMBO J. 1994 Jan 1;13(1):8–17. doi: 10.1002/j.1460-2075.1994.tb06230.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mulligan R. M., Leon P., Walbot V. Transcriptional and posttranscriptional regulation of maize mitochondrial gene expression. Mol Cell Biol. 1991 Jan;11(1):533–543. doi: 10.1128/mcb.11.1.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mulligan R. M., Maloney A. P., Walbot V. RNA processing and multiple transcription initiation sites result in transcript size heterogeneity in maize mitochondria. Mol Gen Genet. 1988 Mar;211(3):373–380. doi: 10.1007/BF00425688. [DOI] [PubMed] [Google Scholar]
  25. Rapp W. D., Lupold D. S., Mack S., Stern D. B. Architecture of the maize mitochondrial atp1 promoter as determined by linker-scanning and point mutagenesis. Mol Cell Biol. 1993 Dec;13(12):7232–7238. doi: 10.1128/mcb.13.12.7232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rapp W. D., Stern D. B. A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atp1 gene. EMBO J. 1992 Mar;11(3):1065–1073. doi: 10.1002/j.1460-2075.1992.tb05145.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Remacle C., Maréchal-Drouard L. Characterization of the potato mitochondrial transcription unit containing 'native' trnS (GCU), trnF (GAA) and trnP (UGG). Plant Mol Biol. 1996 Feb;30(3):553–563. doi: 10.1007/BF00049331. [DOI] [PubMed] [Google Scholar]
  28. Rothenberg M, Hanson M R. Different transcript abundance of two divergent ATP synthase subunit 9 genes in the mitochondrial genome of Petunia hybrida. Mol Gen Genet. 1987 Aug;209(1):21–27. doi: 10.1007/BF00329831. [DOI] [PubMed] [Google Scholar]
  29. Schuster W., Hiesel R., Isaac P. G., Leaver C. J., Brennicke A. Transcript termini of messenger RNAs in higher plant mitochondria. Nucleic Acids Res. 1986 Aug 11;14(15):5943–5954. doi: 10.1093/nar/14.15.5943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Singh M., Brown G. G. Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region. Plant Cell. 1991 Dec;3(12):1349–1362. doi: 10.1105/tpc.3.12.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stern D. B., Gruissem W. Control of plastid gene expression: 3' inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell. 1987 Dec 24;51(6):1145–1157. doi: 10.1016/0092-8674(87)90600-3. [DOI] [PubMed] [Google Scholar]
  32. Stern D. B., Jones H., Gruissem W. Function of plastid mRNA 3' inverted repeats. RNA stabilization and gene-specific protein binding. J Biol Chem. 1989 Nov 5;264(31):18742–18750. [PubMed] [Google Scholar]
  33. Stern D. B., Kindle K. L. 3'end maturation of the Chlamydomonas reinhardtii chloroplast atpB mRNA is a two-step process. Mol Cell Biol. 1993 Apr;13(4):2277–2285. doi: 10.1128/mcb.13.4.2277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stern D. B., Radwanski E. R., Kindle K. L. A 3' stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell. 1991 Mar;3(3):285–297. doi: 10.1105/tpc.3.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Taussig R., Gilman A. G. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995 Jan 6;270(1):1–4. doi: 10.1074/jbc.270.1.1. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES