Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Aug 15;16(16):5069–5076. doi: 10.1093/emboj/16.16.5069

3'-Inverted repeats in plant mitochondrial mRNAs are processing signals rather than transcription terminators.

S Dombrowski 1, A Brennicke 1, S Binder 1
PMCID: PMC1170141  PMID: 9305648

Abstract

A number of mRNAs in plant mitochondria contain inverted repeats at their 3'-termini. These have been discussed as potential transcription terminators or, alternatively, as post-transcriptional processing and stability signals of longer precursor RNAs. In vitro transcription in a pea mitochondrial lysate now shows that transcription proceeds almost unimpeded through these inverted repeat structures. To investigate their potential function in mRNA processing, we developed an in vitro processing system from pea mitochondria. This in vitro system correctly processes synthetic precursor mRNAs containing the pea atp9 double stem-loop structure, yielding the same 3'-termini observed in vivo. Analysis of the in vitro-generated products and of the processivity of the reaction suggests exonucleolytic degradation up to the stem-loop. The inverted repeat structures found at the 3'-termini of mRNAs in plant mitochondria are thus recognized as processing and most likely also stabilizing signals in transcript maturation, but do not terminate transcription.

Full Text

The Full Text of this article is available as a PDF (307.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binder S., Brennicke A. Transcription initiation sites in mitochondria of Oenothera berteriana. J Biol Chem. 1993 Apr 15;268(11):7849–7855. [PubMed] [Google Scholar]
  2. Binder S., Hatzack F., Brennicke A. A novel pea mitochondrial in vitro transcription system recognizes homologous and heterologous mRNA and tRNA promoters. J Biol Chem. 1995 Sep 22;270(38):22182–22189. doi: 10.1074/jbc.270.38.22182. [DOI] [PubMed] [Google Scholar]
  3. Binder S., Marchfelder A., Brennicke A. Regulation of gene expression in plant mitochondria. Plant Mol Biol. 1996 Oct;32(1-2):303–314. doi: 10.1007/BF00039387. [DOI] [PubMed] [Google Scholar]
  4. Birnstiel M. L., Busslinger M., Strub K. Transcription termination and 3' processing: the end is in site! Cell. 1985 Jun;41(2):349–359. doi: 10.1016/s0092-8674(85)80007-6. [DOI] [PubMed] [Google Scholar]
  5. Blowers A. D., Klein U., Ellmore G. S., Bogorad L. Functional in vivo analyses of the 3' flanking sequences of the Chlamydomonas chloroplast rbcL and psaB genes. Mol Gen Genet. 1993 Apr;238(3):339–349. doi: 10.1007/BF00291992. [DOI] [PubMed] [Google Scholar]
  6. Carpousis A. J., Van Houwe G., Ehretsmann C., Krisch H. M. Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell. 1994 Mar 11;76(5):889–900. doi: 10.1016/0092-8674(94)90363-8. [DOI] [PubMed] [Google Scholar]
  7. Chen H. C., Stern D. B. Specific ribonuclease activities in spinach chloroplasts promote mRNA maturation and degradation. J Biol Chem. 1991 Dec 15;266(35):24205–24211. [PubMed] [Google Scholar]
  8. Chen L. J., Liang Y. J., Jeng S. T., Orozco E. M., Gumport R. I., Lin C. H., Yang M. T. Transcription termination at the Escherichia coli thra terminator by spinach chloroplast RNA polymerase in vitro is influenced by downstream DNA sequences. Nucleic Acids Res. 1995 Nov 25;23(22):4690–4697. doi: 10.1093/nar/23.22.4690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cheng S. W., Lynch E. C., Leason K. R., Court D. L., Shapiro B. A., Friedman D. I. Functional importance of sequence in the stem-loop of a transcription terminator. Science. 1991 Nov 22;254(5035):1205–1207. doi: 10.1126/science.1835546. [DOI] [PubMed] [Google Scholar]
  10. Christianson T. W., Clayton D. A. A tridecamer DNA sequence supports human mitochondrial RNA 3'-end formation in vitro. Mol Cell Biol. 1988 Oct;8(10):4502–4509. doi: 10.1128/mcb.8.10.4502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cohen S. N. Surprises at the 3' end of prokaryotic RNA. Cell. 1995 Mar 24;80(6):829–832. doi: 10.1016/0092-8674(95)90284-8. [DOI] [PubMed] [Google Scholar]
  12. Daga A., Micol V., Hess D., Aebersold R., Attardi G. Molecular characterization of the transcription termination factor from human mitochondria. J Biol Chem. 1993 Apr 15;268(11):8123–8130. [PubMed] [Google Scholar]
  13. Drager R. G., Zeidler M., Simpson C. L., Stern D. B. A chloroplast transcript lacking the 3' inverted repeat is degraded by 3'-->5' exoribonuclease activity. RNA. 1996 Jul;2(7):652–663. [PMC free article] [PubMed] [Google Scholar]
  14. Fernandez-Silva P., Martinez-Azorin F., Micol V., Attardi G. The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. EMBO J. 1997 Mar 3;16(5):1066–1079. doi: 10.1093/emboj/16.5.1066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Finnegan P. M., Brown G. G. Transcriptional and Post-Transcriptional Regulation of RNA Levels in Maize Mitochondria. Plant Cell. 1990 Jan;2(1):71–83. doi: 10.1105/tpc.2.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hanic-Joyce P. J., Gray M. W. Processing of transfer RNA precursors in a wheat mitochondrial extract. J Biol Chem. 1990 Aug 15;265(23):13782–13791. [PubMed] [Google Scholar]
  17. Hayes R., Kudla J., Schuster G., Gabay L., Maliga P., Gruissem W. Chloroplast mRNA 3'-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO J. 1996 Mar 1;15(5):1132–1141. [PMC free article] [PubMed] [Google Scholar]
  18. Kaleikau E. K., André C. P., Walbot V. Structure and expression of the rice mitochondrial apocytochrome b gene (cob-1) and pseudogene (cob-2). Curr Genet. 1992 Dec;22(6):463–470. doi: 10.1007/BF00326411. [DOI] [PubMed] [Google Scholar]
  19. Manley J. L., Proudfoot N. J. RNA 3' ends: formation and function--meeting review. Genes Dev. 1994 Feb 1;8(3):259–264. doi: 10.1101/gad.8.3.259. [DOI] [PubMed] [Google Scholar]
  20. Min J., Zassenhaus H. P. Identification of a protein complex that binds to a dodecamer sequence found at the 3' ends of yeast mitochondrial mRNAs. Mol Cell Biol. 1993 Jul;13(7):4167–4173. doi: 10.1128/mcb.13.7.4167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morikami A., Nakamura K. Structure and expression of pea mitochondrial F1ATPase alpha-subunit gene and its pseudogene involved in homologous recombination. J Biochem. 1987 Apr;101(4):967–976. doi: 10.1093/oxfordjournals.jbchem.a121966. [DOI] [PubMed] [Google Scholar]
  22. Morikami A., Nakamura K. Transcript map of oppositely oriented pea mitochondrial genes encoding the alpha-subunit and the subunit 9 of F1F0-ATPase complex. Biosci Biotechnol Biochem. 1993 Sep;57(9):1530–1535. doi: 10.1271/bbb.57.1530. [DOI] [PubMed] [Google Scholar]
  23. Muise R. C., Hauswirth W. W. Transcription in maize mitochondria: effects of tissue and mitochondrial genotype. Curr Genet. 1992 Sep;22(3):235–242. doi: 10.1007/BF00351731. [DOI] [PubMed] [Google Scholar]
  24. Mulligan R. M., Leon P., Walbot V. Transcriptional and posttranscriptional regulation of maize mitochondrial gene expression. Mol Cell Biol. 1991 Jan;11(1):533–543. doi: 10.1128/mcb.11.1.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nickelsen J., Link G. The 54 kDa RNA-binding protein from mustard chloroplasts mediates endonucleolytic transcript 3' end formation in vitro. Plant J. 1993 Apr;3(4):537–544. doi: 10.1046/j.1365-313x.1993.03040537.x. [DOI] [PubMed] [Google Scholar]
  26. Nudler E., Kashlev M., Nikiforov V., Goldfarb A. Coupling between transcription termination and RNA polymerase inchworming. Cell. 1995 May 5;81(3):351–357. doi: 10.1016/0092-8674(95)90388-7. [DOI] [PubMed] [Google Scholar]
  27. Rochaix J. D. Post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii. Plant Mol Biol. 1996 Oct;32(1-2):327–341. doi: 10.1007/BF00039389. [DOI] [PubMed] [Google Scholar]
  28. Schuster W., Hiesel R., Isaac P. G., Leaver C. J., Brennicke A. Transcript termini of messenger RNAs in higher plant mitochondria. Nucleic Acids Res. 1986 Aug 11;14(15):5943–5954. doi: 10.1093/nar/14.15.5943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stern D. B., Gruissem W. Control of plastid gene expression: 3' inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell. 1987 Dec 24;51(6):1145–1157. doi: 10.1016/0092-8674(87)90600-3. [DOI] [PubMed] [Google Scholar]
  30. Sugita M., Sugiura M. Regulation of gene expression in chloroplasts of higher plants. Plant Mol Biol. 1996 Oct;32(1-2):315–326. doi: 10.1007/BF00039388. [DOI] [PubMed] [Google Scholar]
  31. Wahleithner J. A., Wolstenholme D. R. Ribosomal protein S14 genes in broad bean mitochondrial DNA. Nucleic Acids Res. 1988 Jul 25;16(14B):6897–6913. doi: 10.1093/nar/16.14.6897. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES