Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Aug 15;16(16):5113–5122. doi: 10.1093/emboj/16.16.5113

Functional RT and IN incorporated into HIV-1 particles independently of the Gag/Pol precursor protein.

X Wu 1, H Liu 1, H Xiao 1, J A Conway 1, E Hunter 1, J C Kappes 1
PMCID: PMC1170145  PMID: 9305652

Abstract

The expression and incorporation of retroviral enzymes into virions in the form of Gag/Pol precursor polyproteins is believed to be important for the assembly of infectious viral particles. HIV-1 encodes a 160 kDa Gag/Pol precursor that includes Gag, protease (PR), reverse transcriptase (RT) and integrase (IN). We have developed the use of HIV accessory proteins (Vpr and Vpx) as vehicles to incorporate protein of both viral and non-viral origin into virions by expression in trans as heterologous fusion proteins (Wu et al., 1995, 1996a). To analyze the role of Gag/Pol in the formation of infectious virions, we incorporated RT and IN into HIV-1 particles in trans, as fusion partners of viral protein R (Vpr). Virions derived from an RT and IN minus proviral clone were infectious and replicated through a complete cycle of infection when RT and IN proteins were provided in trans. These results demonstrate that functional RT and IN proteins can be provided in trans, and that their expression and incorporation into virions as components of Gag/Pol are not required for the formation of infectious virions. Thus, for the first time, we have demonstrated for a human pathogenic retrovirus that processes of assembly and the function of critical viral enzymes can be unlinked. This finding will provide unique opportunities to explore retroviral RT/IN function and the role of Gag/Pol in the formation of infectious virions in the context of a replicating virus (in vivo).

Full Text

The Full Text of this article is available as a PDF (516.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansari-Lari M. A., Donehower L. A., Gibbs R. A. Analysis of human immunodeficiency virus type 1 integrase mutants. Virology. 1995 Aug 1;211(1):332–335. doi: 10.1006/viro.1995.1412. [DOI] [PubMed] [Google Scholar]
  2. Ansari-Lari M. A., Gibbs R. A. Expression of human immunodeficiency virus type 1 reverse transcriptase in trans during virion release and after infection. J Virol. 1996 Jun;70(6):3870–3875. doi: 10.1128/jvi.70.6.3870-3875.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dubay J. W., Roberts S. J., Hahn B. H., Hunter E. Truncation of the human immunodeficiency virus type 1 transmembrane glycoprotein cytoplasmic domain blocks virus infectivity. J Virol. 1992 Nov;66(11):6616–6625. doi: 10.1128/jvi.66.11.6616-6625.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Engelman A., Craigie R. Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J Virol. 1992 Nov;66(11):6361–6369. doi: 10.1128/jvi.66.11.6361-6369.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Engelman A., Englund G., Orenstein J. M., Martin M. A., Craigie R. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol. 1995 May;69(5):2729–2736. doi: 10.1128/jvi.69.5.2729-2736.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ghosh S. K., Fultz P. N., Keddie E., Saag M. S., Sharp P. M., Hahn B. H., Shaw G. M. A molecular clone of HIV-1 tropic and cytopathic for human and chimpanzee lymphocytes. Virology. 1993 Jun;194(2):858–864. doi: 10.1006/viro.1993.1331. [DOI] [PubMed] [Google Scholar]
  7. Jackson J. B., Kwok S. Y., Sninsky J. J., Hopsicker J. S., Sannerud K. J., Rhame F. S., Henry K., Simpson M., Balfour H. H., Jr Human immunodeficiency virus type 1 detected in all seropositive symptomatic and asymptomatic individuals. J Clin Microbiol. 1990 Jan;28(1):16–19. doi: 10.1128/jcm.28.1.16-19.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Katz R. A., Skalka A. M. The retroviral enzymes. Annu Rev Biochem. 1994;63:133–173. doi: 10.1146/annurev.bi.63.070194.001025. [DOI] [PubMed] [Google Scholar]
  9. Kimpton J., Emerman M. Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol. 1992 Apr;66(4):2232–2239. doi: 10.1128/jvi.66.4.2232-2239.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4686–4690. doi: 10.1073/pnas.85.13.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leavitt A. D., Robles G., Alesandro N., Varmus H. E. Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection. J Virol. 1996 Feb;70(2):721–728. doi: 10.1128/jvi.70.2.721-728.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Liu H., Wu X., Newman M., Shaw G. M., Hahn B. H., Kappes J. C. The Vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures. J Virol. 1995 Dec;69(12):7630–7638. doi: 10.1128/jvi.69.12.7630-7638.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Luban J., Lee C., Goff S. P. Effect of linker insertion mutations in the human immunodeficiency virus type 1 gag gene on activation of viral protease expressed in bacteria. J Virol. 1993 Jun;67(6):3630–3634. doi: 10.1128/jvi.67.6.3630-3634.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mak J., Jiang M., Wainberg M. A., Hammarskjöld M. L., Rekosh D., Kleiman L. Role of Pr160gag-pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles. J Virol. 1994 Apr;68(4):2065–2072. doi: 10.1128/jvi.68.4.2065-2072.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marquet R., Isel C., Ehresmann C., Ehresmann B. tRNAs as primer of reverse transcriptases. Biochimie. 1995;77(1-2):113–124. doi: 10.1016/0300-9084(96)88114-4. [DOI] [PubMed] [Google Scholar]
  16. Masuda T., Planelles V., Krogstad P., Chen I. S. Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger-like domain. J Virol. 1995 Nov;69(11):6687–6696. doi: 10.1128/jvi.69.11.6687-6696.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shin C. G., Taddeo B., Haseltine W. A., Farnet C. M. Genetic analysis of the human immunodeficiency virus type 1 integrase protein. J Virol. 1994 Mar;68(3):1633–1642. doi: 10.1128/jvi.68.3.1633-1642.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Trono D. Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses. J Virol. 1992 Aug;66(8):4893–4900. doi: 10.1128/jvi.66.8.4893-4900.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wu X., Liu H., Xiao H., Kappes J. C. Proteolytic activity of human immunodeficiency virus Vpr- and Vpx-protease fusion proteins. Virology. 1996 May 1;219(1):307–313. doi: 10.1006/viro.1996.0253. [DOI] [PubMed] [Google Scholar]
  20. Wu X., Liu H., Xiao H., Kim J., Seshaiah P., Natsoulis G., Boeke J. D., Hahn B. H., Kappes J. C. Targeting foreign proteins to human immunodeficiency virus particles via fusion with Vpr and Vpx. J Virol. 1995 Jun;69(6):3389–3398. doi: 10.1128/jvi.69.6.3389-3398.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES