Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Sep 1;16(17):5151–5161. doi: 10.1093/emboj/16.17.5151

X-ray structure of antistasin at 1.9 A resolution and its modelled complex with blood coagulation factor Xa.

R Lapatto 1, U Krengel 1, H A Schreuder 1, A Arkema 1, B de Boer 1, K H Kalk 1, W G Hol 1, P D Grootenhuis 1, J W Mulders 1, R Dijkema 1, H J Theunissen 1, B W Dijkstra 1
PMCID: PMC1170148  PMID: 9311976

Abstract

The three-dimensional structure of antistasin, a potent inhibitor of blood coagulation factor Xa, from the Mexican leech Haementeria officinalis was determined at 1.9 A resolution by X-ray crystallography. The structure reveals a novel protein fold composed of two homologous domains, each resembling the structure of hirustasin, a related 55-residue protease inhibitor. However, hirustasin has a different overall shape than the individual antistasin domains, it contains four rather than two beta-strands, and does not inhibit factor Xa. The two antistasin domains can be subdivided into two similarly sized subdomains with different relative orientations. Consequently, the domain shapes are different, the N-terminal domain being wedge-shaped and the C-terminal domain flat. Docking studies suggest that differences in domain shape enable the N-terminal, but not C-terminal, domain of antistasin to bind and inhibit factor Xa, even though both have a very similar reactive site. Furthermore, a putative exosite binding region could be defined in the N-terminal domain of antistasin, comprising residues 15-17, which is likely to interact with a cluster of positively charged residues on the factor Xa surface (Arg222/Lys223/Lys224). This exosite binding region explains the specificity and inhibitory potency of antistasin towards factor Xa. In the C-terminal domain of antistasin, these exosite interactions are prevented due to the different overall shape of this domain.

Full Text

The Full Text of this article is available as a PDF (617.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blankenship D. T., Brankamp R. G., Manley G. D., Cardin A. D. Amino acid sequence of ghilanten: anticoagulant-antimetastatic principle of the South American leech, Haementeria ghilianii. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1384–1389. doi: 10.1016/0006-291x(90)91020-s. [DOI] [PubMed] [Google Scholar]
  2. Bode W., Greyling H. J., Huber R., Otlewski J., Wilusz T. The refined 2.0 A X-ray crystal structure of the complex formed between bovine beta-trypsin and CMTI-I, a trypsin inhibitor from squash seeds (Cucurbita maxima). Topological similarity of the squash seed inhibitors with the carboxypeptidase A inhibitor from potatoes. FEBS Lett. 1989 Jan 2;242(2):285–292. doi: 10.1016/0014-5793(89)80486-7. [DOI] [PubMed] [Google Scholar]
  3. Brankamp R. G., Blankenship D. T., Sunkara P. S., Cardin A. D. Ghilantens: anticoagulant-antimetastatic proteins from the South American leech, Haementeria ghilianii. J Lab Clin Med. 1990 Jan;115(1):89–97. [PubMed] [Google Scholar]
  4. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  5. Dunwiddie C. T., Nutt E. M., Vlasuk G. P., Siegl P. K., Schaffer L. W. Anticoagulant efficacy and immunogenicity of the selective factor Xa inhibitor antistasin following subcutaneous administration in the rhesus monkey. Thromb Haemost. 1992 Mar 2;67(3):371–376. [PubMed] [Google Scholar]
  6. Dunwiddie C. T., Vlasuk G. P., Nutt E. M. The hydrolysis and resynthesis of a single reactive site peptide bond in recombinant antistasin by coagulation factor Xa. Arch Biochem Biophys. 1992 May 1;294(2):647–653. doi: 10.1016/0003-9861(92)90737-h. [DOI] [PubMed] [Google Scholar]
  7. Dunwiddie C., Thornberry N. A., Bull H. G., Sardana M., Friedman P. A., Jacobs J. W., Simpson E. Antistasin, a leech-derived inhibitor of factor Xa. Kinetic analysis of enzyme inhibition and identification of the reactive site. J Biol Chem. 1989 Oct 5;264(28):16694–16699. [PubMed] [Google Scholar]
  8. Grootenhuis P. D., van Galen P. J. Correlation of binding affinities with non-bonded interaction energies of thrombin-inhibitor complexes. Acta Crystallogr D Biol Crystallogr. 1995 Jul 1;51(Pt 4):560–566. doi: 10.1107/S0907444994011686. [DOI] [PubMed] [Google Scholar]
  9. Grütter M. G., Fendrich G., Huber R., Bode W. The 2.5 A X-ray crystal structure of the acid-stable proteinase inhibitor from human mucous secretions analysed in its complex with bovine alpha-chymotrypsin. EMBO J. 1988 Feb;7(2):345–351. doi: 10.1002/j.1460-2075.1988.tb02819.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Han J. H., Law S. W., Keller P. M., Kniskern P. J., Silberklang M., Tung J. S., Gasic T. B., Gasic G. J., Friedman P. A., Ellis R. W. Cloning and expression of cDNA encoding antistasin, a leech-derived protein having anti-coagulant and anti-metastatic properties. Gene. 1989 Jan 30;75(1):47–57. doi: 10.1016/0378-1119(89)90382-x. [DOI] [PubMed] [Google Scholar]
  11. Hauptmann J., Kaiser B. Anticoagulant and antithrombotic action of the factor Xa inhibitor antistasin (ATS). Thromb Res. 1993 Jul 15;71(2):169–174. doi: 10.1016/0049-3848(93)90183-o. [DOI] [PubMed] [Google Scholar]
  12. Hofmann K. J., Nutt E. M., Dunwiddie C. T. Site-directed mutagenesis of the leech-derived factor Xa inhibitor antistasin. Probing of the reactive site. Biochem J. 1992 Nov 1;287(Pt 3):943–949. doi: 10.1042/bj2870943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  14. Jackson C. M., Nemerson Y. Blood coagulation. Annu Rev Biochem. 1980;49:765–811. doi: 10.1146/annurev.bi.49.070180.004001. [DOI] [PubMed] [Google Scholar]
  15. Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
  16. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  17. Krezel A. M., Wagner G., Seymour-Ulmer J., Lazarus R. A. Structure of the RGD protein decorsin: conserved motif and distinct function in leech proteins that affect blood clotting. Science. 1994 Jun 24;264(5167):1944–1947. doi: 10.1126/science.8009227. [DOI] [PubMed] [Google Scholar]
  18. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  19. Mellott M. J., Holahan M. A., Lynch J. J., Vlasuk G. P., Dunwiddie C. T. Acceleration of recombinant tissue-type plasminogen activator-induced reperfusion and prevention of reocclusion by recombinant antistasin, a selective factor Xa inhibitor, in a canine model of femoral arterial thrombosis. Circ Res. 1992 Jun;70(6):1152–1160. doi: 10.1161/01.res.70.6.1152. [DOI] [PubMed] [Google Scholar]
  20. Nutt E. M., Jain D., Lenny A. B., Schaffer L., Siegl P. K., Dunwiddie C. T. Purification and characterization of recombinant antistasin: a leech-derived inhibitor of coagulation factor Xa. Arch Biochem Biophys. 1991 Feb 15;285(1):37–44. doi: 10.1016/0003-9861(91)90325-d. [DOI] [PubMed] [Google Scholar]
  21. Padmanabhan K., Padmanabhan K. P., Tulinsky A., Park C. H., Bode W., Huber R., Blankenship D. T., Cardin A. D., Kisiel W. Structure of human des(1-45) factor Xa at 2.2 A resolution. J Mol Biol. 1993 Aug 5;232(3):947–966. doi: 10.1006/jmbi.1993.1441. [DOI] [PubMed] [Google Scholar]
  22. Palladino L. O., Tung J. S., Dunwiddie C., Alves K., Lenny A. B., Przysiecki C., Lehman D., Nutt E., Cuca G. C., Law S. W. Expression and characterization of the N-terminal half of antistasin, an anticoagulant protein derived from the leech Haementeria officinalis. Protein Expr Purif. 1991 Feb;2(1):37–42. doi: 10.1016/1046-5928(91)90007-6. [DOI] [PubMed] [Google Scholar]
  23. Schreuder H., Arkema A., de Boer B., Kalk K., Dijkema R., Mulders J., Theunissen H., Hol W. Crystallization and preliminary crystallographic analysis of antistasin, a leech-derived inhibitor of blood coagulation factor Xa. J Mol Biol. 1993 Jun 20;231(4):1137–1138. doi: 10.1006/jmbi.1993.1360. [DOI] [PubMed] [Google Scholar]
  24. Söllner C., Mentele R., Eckerskorn C., Fritz H., Sommerhoff C. P. Isolation and characterization of hirustasin, an antistasin-type serine-proteinase inhibitor from the medical leech Hirudo medicinalis. Eur J Biochem. 1994 Feb 1;219(3):937–943. doi: 10.1111/j.1432-1033.1994.tb18575.x. [DOI] [PubMed] [Google Scholar]
  25. Theunissen H. J., Dijkema R., Swinkels J. C., de Poorter T. L., Vink P. M., van Dinther T. G. Mutational analysis of antistasin, an inhibitor of blood coagulation factor Xa derived from the Mexican leech Haementeria officinalis. Thromb Res. 1994 Jul 1;75(1):41–50. doi: 10.1016/0049-3848(94)90138-4. [DOI] [PubMed] [Google Scholar]
  26. Tuszynski G. P., Gasic T. B., Gasic G. J. Isolation and characterization of antistasin. An inhibitor of metastasis and coagulation. J Biol Chem. 1987 Jul 15;262(20):9718–9723. [PubMed] [Google Scholar]
  27. Vlasuk G. P., Ramjit D., Fujita T., Dunwiddie C. T., Nutt E. M., Smith D. E., Shebuski R. J. Comparison of the in vivo anticoagulant properties of standard heparin and the highly selective factor Xa inhibitors antistasin and tick anticoagulant peptide (TAP) in a rabbit model of venous thrombosis. Thromb Haemost. 1991 Mar 4;65(3):257–262. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES