Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Sep 1;16(17):5178–5187. doi: 10.1093/emboj/16.17.5178

Crystal structure of the site-specific recombinase, XerD.

H S Subramanya 1, L K Arciszewska 1, R A Baker 1, L E Bird 1, D J Sherratt 1, D B Wigley 1
PMCID: PMC1170150  PMID: 9311978

Abstract

The structure of the site-specific recombinase, XerD, that functions in circular chromosome separation, has been solved at 2.5 A resolution and reveals that the protein comprises two domains. The C-terminal domain contains two conserved sequence motifs that are located in similar positions in the structures of XerD, lambda and HP1 integrases. However, the extreme C-terminal regions of the three proteins, containing the active site tyrosine, are very different. In XerD, the arrangement of active site residues supports a cis cleavage mechanism. Biochemical evidence for DNA bending is encompassed in a model that accommodates extensive biochemical and genetic data, and in which the DNA is wrapped around an alpha-helix in a manner similar to that observed for CAP complexed with DNA.

Full Text

The Full Text of this article is available as a PDF (681.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abremski K. E., Hoess R. H. Evidence for a second conserved arginine residue in the integrase family of recombination proteins. Protein Eng. 1992 Jan;5(1):87–91. doi: 10.1093/protein/5.1.87. [DOI] [PubMed] [Google Scholar]
  2. Arciszewska L. K., Grainge I., Sherratt D. J. Action of site-specific recombinases XerC and XerD on tethered Holliday junctions. EMBO J. 1997 Jun 16;16(12):3731–3743. doi: 10.1093/emboj/16.12.3731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arciszewska L. K., Sherratt D. J. Xer site-specific recombination in vitro. EMBO J. 1995 May 1;14(9):2112–2120. doi: 10.1002/j.1460-2075.1995.tb07203.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Argos P., Landy A., Abremski K., Egan J. B., Haggard-Ljungquist E., Hoess R. H., Kahn M. L., Kalionis B., Narayana S. V., Pierson L. S., 3rd The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 1986 Feb;5(2):433–440. doi: 10.1002/j.1460-2075.1986.tb04229.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blake J. A., Ganguly N., Sherratt D. J. DNA sequence of recombinase-binding sites can determine Xer site-specific recombination outcome. Mol Microbiol. 1997 Jan;23(2):387–398. doi: 10.1046/j.1365-2958.1997.2261600.x. [DOI] [PubMed] [Google Scholar]
  6. Blakely G. W., Davidson A. O., Sherratt D. J. Binding and cleavage of nicked substrates by site-specific recombinases XerC and XerD. J Mol Biol. 1997 Jan 10;265(1):30–39. doi: 10.1006/jmbi.1996.0709. [DOI] [PubMed] [Google Scholar]
  7. Blakely G., Colloms S., May G., Burke M., Sherratt D. Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol. 1991 Aug;3(8):789–798. [PubMed] [Google Scholar]
  8. Blakely G., May G., McCulloch R., Arciszewska L. K., Burke M., Lovett S. T., Sherratt D. J. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell. 1993 Oct 22;75(2):351–361. doi: 10.1016/0092-8674(93)80076-q. [DOI] [PubMed] [Google Scholar]
  9. Brennan R. G., Matthews B. W. The helix-turn-helix DNA binding motif. J Biol Chem. 1989 Feb 5;264(4):1903–1906. [PubMed] [Google Scholar]
  10. Chen J. W., Evans B. R., Yang S. H., Araki H., Oshima Y., Jayaram M. Functional analysis of box I mutations in yeast site-specific recombinases Flp and R: pairwise complementation with recombinase variants lacking the active-site tyrosine. Mol Cell Biol. 1992 Sep;12(9):3757–3765. doi: 10.1128/mcb.12.9.3757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen J. W., Evans B. R., Yang S. H., Teplow D. B., Jayaram M. Domain of a yeast site-specific recombinase (Flp) that recognizes its target site. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):5944–5948. doi: 10.1073/pnas.88.14.5944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chen J. W., Lee J., Jayaram M. DNA cleavage in trans by the active site tyrosine during Flp recombination: switching protein partners before exchanging strands. Cell. 1992 May 15;69(4):647–658. doi: 10.1016/0092-8674(92)90228-5. [DOI] [PubMed] [Google Scholar]
  13. Colloms S. D., Bath J., Sherratt D. J. Topological selectivity in Xer site-specific recombination. Cell. 1997 Mar 21;88(6):855–864. doi: 10.1016/s0092-8674(00)81931-5. [DOI] [PubMed] [Google Scholar]
  14. Han Y. W., Gumport R. I., Gardner J. F. Complementation of bacteriophage lambda integrase mutants: evidence for an intersubunit active site. EMBO J. 1993 Dec;12(12):4577–4584. doi: 10.1002/j.1460-2075.1993.tb06146.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hayes F., Sherratt D. J. Recombinase binding specificity at the chromosome dimer resolution site dif of Escherichia coli. J Mol Biol. 1997 Feb 28;266(3):525–537. doi: 10.1006/jmbi.1996.0828. [DOI] [PubMed] [Google Scholar]
  16. Hickman A. B., Waninger S., Scocca J. J., Dyda F. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution. Cell. 1997 Apr 18;89(2):227–237. doi: 10.1016/s0092-8674(00)80202-0. [DOI] [PubMed] [Google Scholar]
  17. Jayaram M. The cis-trans paradox of integrase. Science. 1997 Apr 4;276(5309):49–51. doi: 10.1126/science.276.5309.49. [DOI] [PubMed] [Google Scholar]
  18. Kwon H. J., Tirumalai R., Landy A., Ellenberger T. Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science. 1997 Apr 4;276(5309):126–131. doi: 10.1126/science.276.5309.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee J., Serre M. C., Yang S. H., Whang I., Araki H., Oshima Y., Jayaram M. Functional analysis of Box II mutations in yeast site-specific recombinases Flp and R. Significance of amino acid conservation within the Int family and the yeast sub-family. J Mol Biol. 1992 Dec 20;228(4):1091–1103. doi: 10.1016/0022-2836(92)90317-d. [DOI] [PubMed] [Google Scholar]
  20. Lee J., Whang I., Lee J., Jayaram M. Directed protein replacement in recombination full sites reveals trans-horizontal DNA cleavage by Flp recombinase. EMBO J. 1994 Nov 15;13(22):5346–5354. doi: 10.1002/j.1460-2075.1994.tb06869.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nunes-Düby S. E., Tirumalai R. S., Dorgai L., Yagil E., Weisberg R. A., Landy A. Lambda integrase cleaves DNA in cis. EMBO J. 1994 Sep 15;13(18):4421–4430. doi: 10.1002/j.1460-2075.1994.tb06762.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pan G., Sadowski P. D. Identification of the functional domains of the FLP recombinase. Separation of the nonspecific and specific DNA-binding, cleavage, and ligation domains. J Biol Chem. 1993 Oct 25;268(30):22546–22551. [PubMed] [Google Scholar]
  23. Pan G., Sadowski P. D. Ligation activity of FLP recombinase. The strand ligation activity of a site-specific recombinase using an activated DNA substrate. J Biol Chem. 1992 Jun 25;267(18):12397–12399. [PubMed] [Google Scholar]
  24. Panigrahi G. B., Sadowski P. D. Interaction of the NH2- and COOH-terminal domains of the FLP recombinase with the FLP recognition target sequence. J Biol Chem. 1994 Apr 8;269(14):10940–10945. [PubMed] [Google Scholar]
  25. Pargellis C. A., Nunes-Düby S. E., de Vargas L. M., Landy A. Suicide recombination substrates yield covalent lambda integrase-DNA complexes and lead to identification of the active site tyrosine. J Biol Chem. 1988 Jun 5;263(16):7678–7685. [PubMed] [Google Scholar]
  26. Sheldrick G. M., Dauter Z., Wilson K. S., Hope H., Sieker L. C. The application of direct methods and Patterson interpretation to high-resolution native protein data. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):18–23. doi: 10.1107/S0907444992007364. [DOI] [PubMed] [Google Scholar]
  27. Sherratt D. J., Arciszewska L. K., Blakely G., Colloms S., Grant K., Leslie N., McCulloch R. Site-specific recombination and circular chromosome segregation. Philos Trans R Soc Lond B Biol Sci. 1995 Jan 30;347(1319):37–42. doi: 10.1098/rstb.1995.0006. [DOI] [PubMed] [Google Scholar]
  28. Spiers A. J., Sherratt D. J. Relating primary structure to function in the Escherichia coli XerD site-specific recombinase. Mol Microbiol. 1997 Jun;24(5):1071–1082. doi: 10.1046/j.1365-2958.1997.4171784.x. [DOI] [PubMed] [Google Scholar]
  29. Stark W. M., Boocock M. R. Gatecrashers at the catalytic party. Trends Genet. 1995 Apr;11(4):121–123. doi: 10.1016/s0168-9525(00)89016-2. [DOI] [PubMed] [Google Scholar]
  30. Stark W. M., Boocock M. R., Sherratt D. J. Catalysis by site-specific recombinases. Trends Genet. 1992 Dec;8(12):432–439. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES