Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Sep 1;16(17):5188–5197. doi: 10.1093/emboj/16.17.5188

Direct interaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination.

C Alén 1, D J Sherratt 1, S D Colloms 1
PMCID: PMC1170151  PMID: 9311979

Abstract

Xer site-specific recombination at ColE1 cer converts plasmid multimers into monomers, thus ensuring the heritable stability of ColE1. Two related recombinase proteins, XerC and XerD, catalyse the strand exchange reaction at a 30 bp recombination core site. In addition, two accessory proteins, PepA and ArgR, are required for recombination at cer. These two accessory proteins are thought to act at 180 bp of accessory sequences adjacent to the cer recombination core to ensure that recombination only occurs between directly repeated sites on the same molecule. Here, we demonstrate that PepA and ArgR interact directly with cer, forming a complex in which the accessory sequences of two cer sites are interwrapped approximately three times in a right-handed fashion. We present a model for this synaptic complex, and propose that strand exchange can only occur after the formation of this complex.

Full Text

The Full Text of this article is available as a PDF (585.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartling D., Weiler E. W. Leucine aminopeptidase from Arabidopsis thaliana. Molecular evidence for a phylogenetically conserved enzyme of protein turnover in higher plants. Eur J Biochem. 1992 Apr 1;205(1):425–431. doi: 10.1111/j.1432-1033.1992.tb16796.x. [DOI] [PubMed] [Google Scholar]
  2. Blakely G., May G., McCulloch R., Arciszewska L. K., Burke M., Lovett S. T., Sherratt D. J. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell. 1993 Oct 22;75(2):351–361. doi: 10.1016/0092-8674(93)80076-q. [DOI] [PubMed] [Google Scholar]
  3. Burke M., Merican A. F., Sherratt D. J. Mutant Escherichia coli arginine repressor proteins that fail to bind L-arginine, yet retain the ability to bind their normal DNA-binding sites. Mol Microbiol. 1994 Aug;13(4):609–618. doi: 10.1111/j.1365-2958.1994.tb00455.x. [DOI] [PubMed] [Google Scholar]
  4. Burley S. K., David P. R., Sweet R. M., Taylor A., Lipscomb W. N. Structure determination and refinement of bovine lens leucine aminopeptidase and its complex with bestatin. J Mol Biol. 1992 Mar 5;224(1):113–140. doi: 10.1016/0022-2836(92)90580-d. [DOI] [PubMed] [Google Scholar]
  5. Charlier D., Hassanzadeh G., Kholti A., Gigot D., Piérard A., Glansdorff N. carP, involved in pyrimidine regulation of the Escherichia coli carbamoylphosphate synthetase operon encodes a sequence-specific DNA-binding protein identical to XerB and PepA, also required for resolution of ColEI multimers. J Mol Biol. 1995 Jul 21;250(4):392–406. doi: 10.1006/jmbi.1995.0385. [DOI] [PubMed] [Google Scholar]
  6. Colloms S. D., Bath J., Sherratt D. J. Topological selectivity in Xer site-specific recombination. Cell. 1997 Mar 21;88(6):855–864. doi: 10.1016/s0092-8674(00)81931-5. [DOI] [PubMed] [Google Scholar]
  7. Colloms S. D., McCulloch R., Grant K., Neilson L., Sherratt D. J. Xer-mediated site-specific recombination in vitro. EMBO J. 1996 Mar 1;15(5):1172–1181. [PMC free article] [PubMed] [Google Scholar]
  8. Colloms S. D., Sykora P., Szatmari G., Sherratt D. J. Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J Bacteriol. 1990 Dec;172(12):6973–6980. doi: 10.1128/jb.172.12.6973-6980.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crisona N. J., Kanaar R., Gonzalez T. N., Zechiedrich E. L., Klippel A., Cozzarelli N. R. Processive recombination by wild-type gin and an enhancer-independent mutant. Insight into the mechanisms of recombination selectivity and strand exchange. J Mol Biol. 1994 Oct 28;243(3):437–457. doi: 10.1006/jmbi.1994.1671. [DOI] [PubMed] [Google Scholar]
  10. Cuypers H. T., van Loon-Klaassen L. A., Egberts W. T., de Jong W. W., Bloemendal H. The primary structure of leucine aminopeptidase from bovine eye lens. J Biol Chem. 1982 Jun 25;257(12):7077–7085. [PubMed] [Google Scholar]
  11. Drew H. R., Travers A. A. DNA bending and its relation to nucleosome positioning. J Mol Biol. 1985 Dec 20;186(4):773–790. doi: 10.1016/0022-2836(85)90396-1. [DOI] [PubMed] [Google Scholar]
  12. Guhathakurta A., Summers D. Involvement of ArgR and PepA in the pairing of ColE1 dimer resolution sites. Microbiology. 1995 May;141(Pt 5):1163–1171. doi: 10.1099/13500872-141-5-1163. [DOI] [PubMed] [Google Scholar]
  13. Guhathakurta A., Viney I., Summers D. Accessory proteins impose site selectivity during ColE1 dimer resolution. Mol Microbiol. 1996 May;20(3):613–620. doi: 10.1046/j.1365-2958.1996.5471072.x. [DOI] [PubMed] [Google Scholar]
  14. Lim D. B., Oppenheim J. D., Eckhardt T., Maas W. K. Nucleotide sequence of the argR gene of Escherichia coli K-12 and isolation of its product, the arginine repressor. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6697–6701. doi: 10.1073/pnas.84.19.6697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McCulloch R., Burke M. E., Sherratt D. J. Peptidase activity of Escherichia coli aminopeptidase A is not required for its role in Xer site-specific recombination. Mol Microbiol. 1994 Apr;12(2):241–251. doi: 10.1111/j.1365-2958.1994.tb01013.x. [DOI] [PubMed] [Google Scholar]
  16. Shaw S. Y., Wang J. C. Knotting of a DNA chain during ring closure. Science. 1993 Apr 23;260(5107):533–536. doi: 10.1126/science.8475384. [DOI] [PubMed] [Google Scholar]
  17. Stasiak A., Katritch V., Bednar J., Michoud D., Dubochet J. Electrophoretic mobility of DNA knots. Nature. 1996 Nov 14;384(6605):122–122. doi: 10.1038/384122a0. [DOI] [PubMed] [Google Scholar]
  18. Stirling C. J., Colloms S. D., Collins J. F., Szatmari G., Sherratt D. J. xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J. 1989 May;8(5):1623–1627. doi: 10.1002/j.1460-2075.1989.tb03547.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stirling C. J., Stewart G., Sherratt D. J. Multicopy plasmid stability in Escherichia coli requires host-encoded functions that lead to plasmid site-specific recombination. Mol Gen Genet. 1988 Sep;214(1):80–84. doi: 10.1007/BF00340183. [DOI] [PubMed] [Google Scholar]
  20. Stirling C. J., Szatmari G., Stewart G., Smith M. C., Sherratt D. J. The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus. EMBO J. 1988 Dec 20;7(13):4389–4395. doi: 10.1002/j.1460-2075.1988.tb03338.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Summers D. K. Derivatives of ColE1 cer show altered topological specificity in site-specific recombination. EMBO J. 1989 Jan;8(1):309–315. doi: 10.1002/j.1460-2075.1989.tb03378.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Summers D. K., Sherratt D. J. Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability. Cell. 1984 Apr;36(4):1097–1103. doi: 10.1016/0092-8674(84)90060-6. [DOI] [PubMed] [Google Scholar]
  23. Vogt V. M. Purification and properties of an aminopeptidase from Escherichia coli. J Biol Chem. 1970 Sep 25;245(18):4760–4769. [PubMed] [Google Scholar]
  24. Wood D. O., Solomon M. J., Speed R. R. Characterization of the Rickettsia prowazekii pepA gene encoding leucine aminopeptidase. J Bacteriol. 1993 Jan;175(1):159–165. doi: 10.1128/jb.175.1.159-165.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES