Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Sep 1;16(17):5247–5259. doi: 10.1093/emboj/16.17.5247

RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development.

Y Yin 1, Q Zhu 1, S Dai 1, C Lamb 1, R N Beachy 1
PMCID: PMC1170157  PMID: 9311985

Abstract

Rice tungro bacilliform virus (RTBV) replicates only in phloem cells in infected rice plants and its promoter drives strong phloem-specific reporter gene expression in transgenic rice plants. We isolated a cDNA encoding a basic leucine zipper (bZIP) protein, RF2a, which binds to the Box II cis element that is important for expression from the promoter. RF2a, which stimulates Box II-dependent transcription in a homologous in vitro transcription system, accumulates in nuclei of phloem and certain other cell types in shoots, but is found at only very low levels in roots. Transgenic antisense plants in which RF2a accumulation was suppressed had normal roots but stunted, twisted leaves with small, disorganized vascular bundles, an enlarged sclerenchyma and large air spaces. We propose that the RTBV promoter exploits a host transcription factor that is critical for leaf tissue differentiation and vascular development for its expression.

Full Text

The Full Text of this article is available as a PDF (897.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aukerman M. J., Schmidt R. J., Burr B., Burr F. A. An arginine to lysine substitution in the bZIP domain of an opaque-2 mutant in maize abolishes specific DNA binding. Genes Dev. 1991 Feb;5(2):310–320. doi: 10.1101/gad.5.2.310. [DOI] [PubMed] [Google Scholar]
  2. Bhattacharyya-Pakrasi M., Peng J., Elmer J. S., Laco G., Shen P., Kaniewska M. B., Kononowicz H., Wen F., Hodges T. K., Beachy R. N. Specificity of a promoter from the rice tungro bacilliform virus for expression in phloem tissues. Plant J. 1993 Jul;4(1):71–79. doi: 10.1046/j.1365-313x.1993.04010071.x. [DOI] [PubMed] [Google Scholar]
  3. Christensen A. H., Sharrock R. A., Quail P. H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 1992 Feb;18(4):675–689. doi: 10.1007/BF00020010. [DOI] [PubMed] [Google Scholar]
  4. DeWitt N. D., Harper J. F., Sussman M. R. Evidence for a plasma membrane proton pump in phloem cells of higher plants. Plant J. 1991 Jul;1(1):121–128. doi: 10.1111/j.1365-313x.1991.00121.x. [DOI] [PubMed] [Google Scholar]
  5. Dröge-Laser W., Kaiser A., Lindsay W. P., Halkier B. A., Loake G. J., Doerner P., Dixon R. A., Lamb C. Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses. EMBO J. 1997 Feb 17;16(4):726–738. doi: 10.1093/emboj/16.4.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Foster R., Izawa T., Chua N. H. Plant bZIP proteins gather at ACGT elements. FASEB J. 1994 Feb;8(2):192–200. doi: 10.1096/fasebj.8.2.8119490. [DOI] [PubMed] [Google Scholar]
  7. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harper J. F., Huang J. F., Lloyd S. J. Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry. 1994 Jun 14;33(23):7267–7277. doi: 10.1021/bi00189a031. [DOI] [PubMed] [Google Scholar]
  9. Hatton D., Sablowski R., Yung M. H., Smith C., Schuch W., Bevan M. Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco. Plant J. 1995 Jun;7(6):859–876. doi: 10.1046/j.1365-313x.1995.07060859.x. [DOI] [PubMed] [Google Scholar]
  10. Hauffe K. D., Lee S. P., Subramaniam R., Douglas C. J. Combinatorial interactions between positive and negative cis-acting elements control spatial patterns of 4CL-1 expression in transgenic tobacco. Plant J. 1993 Aug;4(2):235–253. doi: 10.1046/j.1365-313x.1993.04020235.x. [DOI] [PubMed] [Google Scholar]
  11. Hay J. M., Jones M. C., Blakebrough M. L., Dasgupta I., Davies J. W., Hull R. An analysis of the sequence of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus. Nucleic Acids Res. 1991 May 25;19(10):2615–2621. doi: 10.1093/nar/19.10.2615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hurst H. C. Transcription factors. 1: bZIP proteins. Protein Profile. 1994;1(2):123–168. [PubMed] [Google Scholar]
  13. Keller B., Baumgartner C. Vascular-specific expression of the bean GRP 1.8 gene is negatively regulated. Plant Cell. 1991 Oct;3(10):1051–1061. doi: 10.1105/tpc.3.10.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leyva A., Liang X., Pintor-Toro J. A., Dixon R. A., Lamb C. J. cis-element combinations determine phenylalanine ammonia-lyase gene tissue-specific expression patterns. Plant Cell. 1992 Mar;4(3):263–271. doi: 10.1105/tpc.4.3.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Martin T., Frommer W. B., Salanoubat M., Willmitzer L. Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J. 1993 Aug;4(2):367–377. doi: 10.1046/j.1365-313x.1993.04020367.x. [DOI] [PubMed] [Google Scholar]
  16. Matzke M. A., Matzke AJM. How and Why Do Plants Inactivate Homologous (Trans)genes? Plant Physiol. 1995 Mar;107(3):679–685. doi: 10.1104/pp.107.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Menkens A. E., Schindler U., Cashmore A. R. The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem Sci. 1995 Dec;20(12):506–510. doi: 10.1016/s0968-0004(00)89118-5. [DOI] [PubMed] [Google Scholar]
  18. Pognonec P., Kato H., Sumimoto H., Kretzschmar M., Roeder R. G. A quick procedure for purification of functional recombinant proteins over-expressed in E.coli. Nucleic Acids Res. 1991 Dec 11;19(23):6650–6650. doi: 10.1093/nar/19.23.6650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schmidt R. J., Ketudat M., Aukerman M. J., Hoschek G. Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell. 1992 Jun;4(6):689–700. doi: 10.1105/tpc.4.6.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schmülling T., Schell J., Spena A. Promoters of the rolA, B, and C genes of Agrobacterium rhizogenesare differentially regulated in transgenic plants. Plant Cell. 1989 Jul;1(7):665–670. doi: 10.1105/tpc.1.7.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Suckow M., Schwamborn K., Kisters-Woike B., von Wilcken-Bergmann B., Müller-Hill B. Replacement of invariant bZip residues within the basic region of the yeast transcriptional activator GCN4 can change its DNA binding specificity. Nucleic Acids Res. 1994 Oct 25;22(21):4395–4404. doi: 10.1093/nar/22.21.4395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Torres-Schumann S., Ringli C., Heierli D., Amrhein N., Keller B. In vitro binding of the tomato bZIP transcriptional activator VSF-1 to a regulatory element that controls xylem-specific gene expression. Plant J. 1996 Mar;9(3):283–296. doi: 10.1046/j.1365-313x.1996.09030283.x. [DOI] [PubMed] [Google Scholar]
  23. Verrijzer C. P., Tjian R. TAFs mediate transcriptional activation and promoter selectivity. Trends Biochem Sci. 1996 Sep;21(9):338–342. [PubMed] [Google Scholar]
  24. Wang M. M., Reed R. R. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature. 1993 Jul 8;364(6433):121–126. doi: 10.1038/364121a0. [DOI] [PubMed] [Google Scholar]
  25. Werr W., Frommer W. B., Maas C., Starlinger P. Structure of the sucrose synthase gene on chromosome 9 of Zea mays L. EMBO J. 1985 Jun;4(6):1373–1380. doi: 10.1002/j.1460-2075.1985.tb03789.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yang N. S., Russell D. Maize sucrose synthase-1 promoter directs phloem cell-specific expression of Gus gene in transgenic tobacco plants. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4144–4148. doi: 10.1073/pnas.87.11.4144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yin M. J., Gaynor R. B. Complex formation between CREB and Tax enhances the binding affinity of CREB for the human T-cell leukemia virus type 1 21-base-pair repeats. Mol Cell Biol. 1996 Jun;16(6):3156–3168. doi: 10.1128/mcb.16.6.3156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yin Y., Beachy R. N. The regulatory regions of the rice tungro bacilliform virus promoter and interacting nuclear factors in rice (Oryza sativa L.). Plant J. 1995 Jun;7(6):969–980. doi: 10.1046/j.1365-313x.1995.07060969.x. [DOI] [PubMed] [Google Scholar]
  29. Zawel L., Reinberg D. Common themes in assembly and function of eukaryotic transcription complexes. Annu Rev Biochem. 1995;64:533–561. doi: 10.1146/annurev.bi.64.070195.002533. [DOI] [PubMed] [Google Scholar]
  30. Zhu Q., Chappell J., Hedrick S. A., Lamb C. Accurate in vitro transcription from circularized plasmid templates by plant whole cell extracts. Plant J. 1995 Jun;7(6):1021–1030. doi: 10.1046/j.1365-313x.1995.07061021.x. [DOI] [PubMed] [Google Scholar]
  31. Zhu Q., Dabi T., Lamb C. TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro. Plant Cell. 1995 Oct;7(10):1681–1689. doi: 10.1105/tpc.7.10.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES