Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Sep 1;16(17):5398–5407. doi: 10.1093/emboj/16.17.5398

Coordinated intercellular calcium waves induced by noradrenaline in rat hepatocytes: dual control by gap junction permeability and agonist.

T Tordjmann 1, B Berthon 1, M Claret 1, L Combettes 1
PMCID: PMC1170171  PMID: 9311999

Abstract

Calcium-mobilizing agonists induce intracellular Ca2+ concentration ([Ca2+]i) changes thought to trigger cellular responses. In connected cells, rises in [Ca2+]i can propagate from cell to cell as intercellular Ca2+ waves, the mechanisms of which are not elucidated. Using fura2-loaded rat hepatocytes, we studied the mechanisms controlling coordination and intercellular propagation of noradrenaline-induced Ca2+ signals. Gap junction blockade with 18 alpha-glycyrrhetinic acid resulted in a loss of coordination between connected cells. We found that second messengers and [Ca2+]i rises in one hepatocyte cannot trigger Ca2+ responses in connected cells, suggesting that diffusion across gap junctions, while required for coordination, is not sufficient by itself for the propagation of intercellular Ca2+ waves. In addition, our experiments revealed functional differences between noradrenaline-induced Ca2+ signals in connected hepatocytes. These results demonstrate that intercellular Ca2+ signals in multicellular systems of rat hepatocytes are propagated and highly organized through complex mechanisms involving at least three factors. First, gap junction coupling ensures coordination of [Ca2+]i oscillations between the different cells; second, the presence of hormone at each hepatocyte is required for cell-cell Ca2+ signal propagation; and third, functional differences between adjacent connected hepatocytes could allow a 'pacemaker-like' intercellular spread of Ca2+ waves.

Full Text

The Full Text of this article is available as a PDF (603.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Elementary and global aspects of calcium signalling. J Physiol. 1997 Mar 1;499(Pt 2):291–306. doi: 10.1113/jphysiol.1997.sp021927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boitano S., Dirksen E. R., Sanderson M. J. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science. 1992 Oct 9;258(5080):292–295. doi: 10.1126/science.1411526. [DOI] [PubMed] [Google Scholar]
  3. Bruzzone R., White T. W., Paul D. L. Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem. 1996 May 15;238(1):1–27. doi: 10.1111/j.1432-1033.1996.0001q.x. [DOI] [PubMed] [Google Scholar]
  4. Capiod T., Combettes L., Noel J., Claret M. Evidence for bile acid-evoked oscillations of Ca2(+)-dependent K+ permeability unrelated to a D-myo-inositol 1,4,5-trisphosphate effect in isolated guinea pig liver cells. J Biol Chem. 1991 Jan 5;266(1):268–273. [PubMed] [Google Scholar]
  5. Charles A. C., Kodali S. K., Tyndale R. F. Intercellular calcium waves in neurons. Mol Cell Neurosci. 1996 May;7(5):337–353. doi: 10.1006/mcne.1996.0025. [DOI] [PubMed] [Google Scholar]
  6. Charles A. C., Naus C. C., Zhu D., Kidder G. M., Dirksen E. R., Sanderson M. J. Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol. 1992 Jul;118(1):195–201. doi: 10.1083/jcb.118.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Combettes L., Cheek T. R., Taylor C. W. Regulation of inositol trisphosphate receptors by luminal Ca2+ contributes to quantal Ca2+ mobilization. EMBO J. 1996 May 1;15(9):2086–2093. [PMC free article] [PubMed] [Google Scholar]
  8. Combettes L., Dumont M., Berthon B., Erlinger S., Claret M. Release of calcium from the endoplasmic reticulum by bile acids in rat liver cells. J Biol Chem. 1988 Feb 15;263(5):2299–2303. [PubMed] [Google Scholar]
  9. Dasso L. L., Taylor C. W. Heparin and other polyanions uncouple alpha 1-adrenoceptors from G-proteins. Biochem J. 1991 Dec 15;280(Pt 3):791–795. doi: 10.1042/bj2800791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dedhar S., Hannigan G. E. Integrin cytoplasmic interactions and bidirectional transmembrane signalling. Curr Opin Cell Biol. 1996 Oct;8(5):657–669. doi: 10.1016/s0955-0674(96)80107-4. [DOI] [PubMed] [Google Scholar]
  11. Deutsch D. E., Williams J. A., Yule D. I. Halothane and octanol block Ca2+ oscillations in pancreatic acini by multiple mechanisms. Am J Physiol. 1995 Nov;269(5 Pt 1):G779–G788. doi: 10.1152/ajpgi.1995.269.5.G779. [DOI] [PubMed] [Google Scholar]
  12. Goldberg G. S., Moreno A. P., Bechberger J. F., Hearn S. S., Shivers R. R., MacPhee D. J., Zhang Y. C., Naus C. C. Evidence that disruption of connexon particle arrangements in gap junction plaques is associated with inhibition of gap junctional communication by a glycyrrhetinic acid derivative. Exp Cell Res. 1996 Jan 10;222(1):48–53. doi: 10.1006/excr.1996.0006. [DOI] [PubMed] [Google Scholar]
  13. Graessmann A., Graessmann M., Mueller C. Microinjection of early SV40 DNA fragments and T antigen. Methods Enzymol. 1980;65(1):816–825. doi: 10.1016/s0076-6879(80)65076-9. [DOI] [PubMed] [Google Scholar]
  14. Hansen C. A., Mah S., Williamson J. R. Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver. J Biol Chem. 1986 Jun 25;261(18):8100–8103. [PubMed] [Google Scholar]
  15. Irisawa H., Brown H. F., Giles W. Cardiac pacemaking in the sinoatrial node. Physiol Rev. 1993 Jan;73(1):197–227. doi: 10.1152/physrev.1993.73.1.197. [DOI] [PubMed] [Google Scholar]
  16. Kawanishi T., Blank L. M., Harootunian A. T., Smith M. T., Tsien R. Y. Ca2+ oscillations induced by hormonal stimulation of individual fura-2-loaded hepatocytes. J Biol Chem. 1989 Aug 5;264(22):12859–12866. [PubMed] [Google Scholar]
  17. Lechleiter J. D., Clapham D. E. Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Cell. 1992 Apr 17;69(2):283–294. doi: 10.1016/0092-8674(92)90409-6. [DOI] [PubMed] [Google Scholar]
  18. Nathanson M. H., Burgstahler A. D., Mennone A., Fallon M. B., Gonzalez C. B., Saez J. C. Ca2+ waves are organized among hepatocytes in the intact organ. Am J Physiol. 1995 Jul;269(1 Pt 1):G167–G171. doi: 10.1152/ajpgi.1995.269.1.G167. [DOI] [PubMed] [Google Scholar]
  19. Osipchuk Y., Cahalan M. Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature. 1992 Sep 17;359(6392):241–244. doi: 10.1038/359241a0. [DOI] [PubMed] [Google Scholar]
  20. Palmer R. K., Yule D. I., Shewach D. S., Williams J. A., Fisher S. K. Paracrine mediation of calcium signaling in human SK-N-MCIXC neuroepithelioma cells. Am J Physiol. 1996 Jul;271(1 Pt 1):C43–C53. doi: 10.1152/ajpcell.1996.271.1.C43. [DOI] [PubMed] [Google Scholar]
  21. Petersen O. H., Petersen C. C., Kasai H. Calcium and hormone action. Annu Rev Physiol. 1994;56:297–319. doi: 10.1146/annurev.ph.56.030194.001501. [DOI] [PubMed] [Google Scholar]
  22. Pozzan T., Rizzuto R., Volpe P., Meldolesi J. Molecular and cellular physiology of intracellular calcium stores. Physiol Rev. 1994 Jul;74(3):595–636. doi: 10.1152/physrev.1994.74.3.595. [DOI] [PubMed] [Google Scholar]
  23. Sanderson M. J., Charles A. C., Boitano S., Dirksen E. R. Mechanisms and function of intercellular calcium signaling. Mol Cell Endocrinol. 1994 Jan;98(2):173–187. doi: 10.1016/0303-7207(94)90136-8. [DOI] [PubMed] [Google Scholar]
  24. Schlosser S. F., Burgstahler A. D., Nathanson M. H. Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9948–9953. doi: 10.1073/pnas.93.18.9948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sneyd J., Wetton B. T., Charles A. C., Sanderson M. J. Intercellular calcium waves mediated by diffusion of inositol trisphosphate: a two-dimensional model. Am J Physiol. 1995 Jun;268(6 Pt 1):C1537–C1545. doi: 10.1152/ajpcell.1995.268.6.C1537. [DOI] [PubMed] [Google Scholar]
  26. Spray D. C., Ginzberg R. D., Morales E. A., Gatmaitan Z., Arias I. M. Electrophysiological properties of gap junctions between dissociated pairs of rat hepatocytes. J Cell Biol. 1986 Jul;103(1):135–144. doi: 10.1083/jcb.103.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sáez J. C., Connor J. A., Spray D. C., Bennett M. V. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2708–2712. doi: 10.1073/pnas.86.8.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thomas A. P., Bird G. S., Hajnóczky G., Robb-Gaspers L. D., Putney J. W., Jr Spatial and temporal aspects of cellular calcium signaling. FASEB J. 1996 Nov;10(13):1505–1517. [PubMed] [Google Scholar]
  29. Tordjmann T., Berthon B., Combettes L., Claret M. The location of hepatocytes in the rat liver acinus determines their sensitivity to calcium-mobilizing hormones. Gastroenterology. 1996 Nov;111(5):1343–1352. doi: 10.1053/gast.1996.v111.pm8898649. [DOI] [PubMed] [Google Scholar]
  30. Vorndran C., Minta A., Poenie M. New fluorescent calcium indicators designed for cytosolic retention or measuring calcium near membranes. Biophys J. 1995 Nov;69(5):2112–2124. doi: 10.1016/S0006-3495(95)80082-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Woods N. M., Cuthbertson K. S., Cobbold P. H. Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature. 1986 Feb 13;319(6054):600–602. doi: 10.1038/319600a0. [DOI] [PubMed] [Google Scholar]
  32. Worley P. F., Baraban J. M., Supattapone S., Wilson V. S., Snyder S. H. Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium. J Biol Chem. 1987 Sep 5;262(25):12132–12136. [PubMed] [Google Scholar]
  33. Young R. C., Hession R. O. Intra-and intercellular calcium waves in cultured human myometrium. J Muscle Res Cell Motil. 1996 Jun;17(3):349–355. doi: 10.1007/BF00240932. [DOI] [PubMed] [Google Scholar]
  34. Yule D. I., Stuenkel E., Williams J. A. Intercellular calcium waves in rat pancreatic acini: mechanism of transmission. Am J Physiol. 1996 Oct;271(4 Pt 1):C1285–C1294. doi: 10.1152/ajpcell.1996.271.4.C1285. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES