Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Sep 1;16(17):5420–5432. doi: 10.1093/emboj/16.17.5420

Promotion of transferrin folding by cyclic interactions with calnexin and calreticulin.

I Wada 1, M Kai 1, S Imai 1, F Sakane 1, H Kanoh 1
PMCID: PMC1170173  PMID: 9312001

Abstract

Calnexin, an abundant membrane protein, and its lumenal homolog calreticulin interact with nascent proteins in the endoplasmic reticulum. Because they have an affinity for monoglucosylated N-linked oligosaccharides which can be regenerated from the aglucosylated sugar, it has been speculated that this repeated oligosaccharide binding may play a role in nascent chain folding. To investigate the process, we have developed a novel assay system using microsomes freshly prepared from pulse labeled HepG2 cells. Unlike the previously described oxidative folding systems which required rabbit reticulocyte lysates, the oxidative folding of transferrin in isolated microsomes could be carried out in a defined solution. In this system, addition of a glucose donor, UDP-glucose, to the microsomes triggered glucosylation of transferrin and resulted in its cyclic interaction with calnexin and calreticulin. When the folding of transferrin in microsomes was analyzed, UDP-glucose enhanced the amount of folded transferrin and reduced the disulfide-linked aggregates. Analysis of transferrin folding in briefly heat-treated microsomes revealed that UDP-glucose was also effective in elimination of heat-induced misfolding. Incubation of the microsomes with an alpha-glucosidase inhibitor, castanospermine, prolonged the association of transferrin with the chaperones and prevented completion of folding and, importantly, aggregate formation, particularly in the calnexin complex. Accordingly, we demonstrate that repeated binding of the chaperones to the glucose of the transferrin sugar moiety prevents and corrects misfolding of the protein.

Full Text

The Full Text of this article is available as a PDF (596.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arunachalam B., Cresswell P. Molecular requirements for the interaction of class II major histocompatibility complex molecules and invariant chain with calnexin. J Biol Chem. 1995 Feb 10;270(6):2784–2790. doi: 10.1074/jbc.270.6.2784. [DOI] [PubMed] [Google Scholar]
  2. Baksh S., Burns K., Andrin C., Michalak M. Interaction of calreticulin with protein disulfide isomerase. J Biol Chem. 1995 Dec 29;270(52):31338–31344. doi: 10.1074/jbc.270.52.31338. [DOI] [PubMed] [Google Scholar]
  3. Beckmann R. P., Mizzen L. E., Welch W. J. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science. 1990 May 18;248(4957):850–854. doi: 10.1126/science.2188360. [DOI] [PubMed] [Google Scholar]
  4. Bedows E., Huth J. R., Suganuma N., Bartels C. F., Boime I., Ruddon R. W. Disulfide bond mutations affect the folding of the human chorionic gonadotropin-beta subunit in transfected Chinese hamster ovary cells. J Biol Chem. 1993 Jun 5;268(16):11655–11662. [PubMed] [Google Scholar]
  5. Bergeron J. J., Brenner M. B., Thomas D. Y., Williams D. B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci. 1994 Mar;19(3):124–128. doi: 10.1016/0968-0004(94)90205-4. [DOI] [PubMed] [Google Scholar]
  6. Bey N. F. A CASE OF A SPASM OF THE CENTRAL ARTERY OF THE RETINA. Br J Ophthalmol. 1930 Sep;14(8):402–405. doi: 10.1136/bjo.14.8.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bossuyt X., Blanckaert N. Carrier-mediated transport of intact UDP-glucuronic acid into the lumen of endoplasmic-reticulum-derived vesicles from rat liver. Biochem J. 1994 Aug 15;302(Pt 1):261–269. doi: 10.1042/bj3020261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brunke M., Dierks T., Schlotterhose P., Escher A., Schmidt B., Szalay A. A., Lechte M., Sandholzer U., Zimmermann R. Luciferase assembly after transport into mammalian microsomes involves molecular chaperones and peptidyl-prolyl cis/trans-isomerases. J Biol Chem. 1996 Sep 20;271(38):23487–23494. doi: 10.1074/jbc.271.38.23487. [DOI] [PubMed] [Google Scholar]
  9. Bu G., Rennke S. Receptor-associated protein is a folding chaperone for low density lipoprotein receptor-related protein. J Biol Chem. 1996 Sep 6;271(36):22218–22224. doi: 10.1074/jbc.271.36.22218. [DOI] [PubMed] [Google Scholar]
  10. Cannon K. S., Hebert D. N., Helenius A. Glycan-dependent and -independent association of vesicular stomatitis virus G protein with calnexin. J Biol Chem. 1996 Jun 14;271(24):14280–14284. doi: 10.1074/jbc.271.24.14280. [DOI] [PubMed] [Google Scholar]
  11. Carreno B. M., Schreiber K. L., McKean D. J., Stroynowski I., Hansen T. H. Aglycosylated and phosphatidylinositol-anchored MHC class I molecules are associated with calnexin. Evidence implicating the class I-connecting peptide segment in calnexin association. J Immunol. 1995 May 15;154(10):5173–5180. [PubMed] [Google Scholar]
  12. Clairmont C. A., De Maio A., Hirschberg C. B. Translocation of ATP into the lumen of rough endoplasmic reticulum-derived vesicles and its binding to luminal proteins including BiP (GRP 78) and GRP 94. J Biol Chem. 1992 Feb 25;267(6):3983–3990. [PubMed] [Google Scholar]
  13. Creighton T. E., Bagley C. J., Cooper L., Darby N. J., Freedman R. B., Kemmink J., Sheikh A. On the biosynthesis of bovine pancreatic trypsin inhibitor (BPTI). Structure, processing, folding and disulphide bond formation of the precursor in vitro and in microsomes. J Mol Biol. 1993 Aug 20;232(4):1176–1196. doi: 10.1006/jmbi.1993.1470. [DOI] [PubMed] [Google Scholar]
  14. Creighton T. E., Zapun A., Darby N. J. Mechanisms and catalysts of disulfide bond formation in proteins. Trends Biotechnol. 1995 Jan;13(1):18–23. doi: 10.1016/s0167-7799(00)88896-4. [DOI] [PubMed] [Google Scholar]
  15. Degen E., Williams D. B. Participation of a novel 88-kD protein in the biogenesis of murine class I histocompatibility molecules. J Cell Biol. 1991 Mar;112(6):1099–1115. doi: 10.1083/jcb.112.6.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dierks T., Volkmer J., Schlenstedt G., Jung C., Sandholzer U., Zachmann K., Schlotterhose P., Neifer K., Schmidt B., Zimmermann R. A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum. EMBO J. 1996 Dec 16;15(24):6931–6942. [PMC free article] [PubMed] [Google Scholar]
  17. Freedman R. B. The formation of protein disulphide bonds. Curr Opin Struct Biol. 1995 Feb;5(1):85–91. doi: 10.1016/0959-440x(95)80013-q. [DOI] [PubMed] [Google Scholar]
  18. Fries E., Gustafsson L., Peterson P. A. Four secretory proteins synthesized by hepatocytes are transported from endoplasmic reticulum to Golgi complex at different rates. EMBO J. 1984 Jan;3(1):147–152. doi: 10.1002/j.1460-2075.1984.tb01775.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hammond C., Braakman I., Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):913–917. doi: 10.1073/pnas.91.3.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hartl F. U. Molecular chaperones in cellular protein folding. Nature. 1996 Jun 13;381(6583):571–579. doi: 10.1038/381571a0. [DOI] [PubMed] [Google Scholar]
  21. Hebert D. N., Foellmer B., Helenius A. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J. 1996 Jun 17;15(12):2961–2968. [PMC free article] [PubMed] [Google Scholar]
  22. Hwang C., Sinskey A. J., Lodish H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992 Sep 11;257(5076):1496–1502. doi: 10.1126/science.1523409. [DOI] [PubMed] [Google Scholar]
  23. Lisanti M. P., Field M. C., Caras I. W., Menon A. K., Rodriguez-Boulan E. Mannosamine, a novel inhibitor of glycosylphosphatidylinositol incorporation into proteins. EMBO J. 1991 Aug;10(8):1969–1977. doi: 10.1002/j.1460-2075.1991.tb07726.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lodish H. F., Kong N. Cyclosporin A inhibits an initial step in folding of transferrin within the endoplasmic reticulum. J Biol Chem. 1991 Aug 15;266(23):14835–14838. [PubMed] [Google Scholar]
  25. Marquardt T., Hebert D. N., Helenius A. Post-translational folding of influenza hemagglutinin in isolated endoplasmic reticulum-derived microsomes. J Biol Chem. 1993 Sep 15;268(26):19618–19625. [PubMed] [Google Scholar]
  26. Morgan E. H., Peters T., Jr The biosynthesis of rat transferrin. Evidence for rapid glycosylation, disulfide bond formation, and tertiary folding. J Biol Chem. 1985 Nov 25;260(27):14793–14801. [PubMed] [Google Scholar]
  27. Nagata K. Hsp47: a collagen-specific molecular chaperone. Trends Biochem Sci. 1996 Jan;21(1):22–26. doi: 10.1016/0968-0004(96)80881-4. [DOI] [PubMed] [Google Scholar]
  28. Oliver J. D., van der Wal F. J., Bulleid N. J., High S. Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science. 1997 Jan 3;275(5296):86–88. doi: 10.1126/science.275.5296.86. [DOI] [PubMed] [Google Scholar]
  29. Pahl H. L., Baeuerle P. A. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBO J. 1995 Jun 1;14(11):2580–2588. doi: 10.1002/j.1460-2075.1995.tb07256.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Parodi A. J., Mendelzon D. H., Lederkremer G. Z., Martin-Barrientos J. Evidence that transient glucosylation of protein-linked Man9GlcNAc2, Man8GlcNAc2, and Man7GlcNAc2 occurs in rat liver and Phaseolus vulgaris cells. J Biol Chem. 1984 May 25;259(10):6351–6357. [PubMed] [Google Scholar]
  31. Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  32. Ruddon R. W., Bedows E. Assisted protein folding. J Biol Chem. 1997 Feb 7;272(6):3125–3128. doi: 10.1074/jbc.272.6.3125. [DOI] [PubMed] [Google Scholar]
  33. Sawyer J. T., Lukaczyk T., Yilla M. Dithiothreitol treatment induces heterotypic aggregation of newly synthesized secretory proteins in HepG2 cells. J Biol Chem. 1994 Sep 2;269(35):22440–22445. [PubMed] [Google Scholar]
  34. Sevlever D., Rosenberry T. L. Mannosamine inhibits the synthesis of putative glycoinositol phospholipid anchor precursors in mammalian cells without incorporating into an accumulated intermediate. J Biol Chem. 1993 May 25;268(15):10938–10945. [PubMed] [Google Scholar]
  35. Shtrom S. S., Hall Z. W. Formation of a ligand-binding site for the acetylcholine receptor in vitro. J Biol Chem. 1996 Oct 11;271(41):25506–25514. doi: 10.1074/jbc.271.41.25506. [DOI] [PubMed] [Google Scholar]
  36. Sousa M., Parodi A. J. The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J. 1995 Sep 1;14(17):4196–4203. doi: 10.1002/j.1460-2075.1995.tb00093.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Suh K., Bergmann J. E., Gabel C. A. Selective retention of monoglucosylated high mannose oligosaccharides by a class of mutant vesicular stomatitis virus G proteins. J Cell Biol. 1989 Mar;108(3):811–819. doi: 10.1083/jcb.108.3.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tector M., Salter R. D. Calnexin influences folding of human class I histocompatibility proteins but not their assembly with beta 2-microglobulin. J Biol Chem. 1995 Aug 18;270(33):19638–19642. doi: 10.1074/jbc.270.33.19638. [DOI] [PubMed] [Google Scholar]
  39. Vassilakos A., Cohen-Doyle M. F., Peterson P. A., Jackson M. R., Williams D. B. The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J. 1996 Apr 1;15(7):1495–1506. [PMC free article] [PubMed] [Google Scholar]
  40. Walter P., Blobel G. Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 1983;96:84–93. doi: 10.1016/s0076-6879(83)96010-x. [DOI] [PubMed] [Google Scholar]
  41. Ware F. E., Vassilakos A., Peterson P. A., Jackson M. R., Lehrman M. A., Williams D. B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem. 1995 Mar 3;270(9):4697–4704. doi: 10.1074/jbc.270.9.4697. [DOI] [PubMed] [Google Scholar]
  42. Wiest D. L., Burgess W. H., McKean D., Kearse K. P., Singer A. The molecular chaperone calnexin is expressed on the surface of immature thymocytes in association with clonotype-independent CD3 complexes. EMBO J. 1995 Jul 17;14(14):3425–3433. doi: 10.1002/j.1460-2075.1995.tb07348.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Williams D. B., Watts T. H. Molecular chaperones in antigen presentation. Curr Opin Immunol. 1995 Feb;7(1):77–84. doi: 10.1016/0952-7915(95)80032-8. [DOI] [PubMed] [Google Scholar]
  44. Yeo K. T., Parent J. B., Yeo T. K., Olden K. Variability in transport rates of secretory glycoproteins through the endoplasmic reticulum and Golgi in human hepatoma cells. J Biol Chem. 1985 Jul 5;260(13):7896–7902. [PubMed] [Google Scholar]
  45. Zapun A., Petrescu S. M., Rudd P. M., Dwek R. A., Thomas D. Y., Bergeron J. J. Conformation-independent binding of monoglucosylated ribonuclease B to calnexin. Cell. 1997 Jan 10;88(1):29–38. doi: 10.1016/s0092-8674(00)81855-3. [DOI] [PubMed] [Google Scholar]
  46. Zhang Q., Tector M., Salter R. D. Calnexin recognizes carbohydrate and protein determinants of class I major histocompatibility complex molecules. J Biol Chem. 1995 Feb 24;270(8):3944–3948. doi: 10.1074/jbc.270.8.3944. [DOI] [PubMed] [Google Scholar]
  47. de Silva A., Braakman I., Helenius A. Posttranslational folding of vesicular stomatitis virus G protein in the ER: involvement of noncovalent and covalent complexes. J Cell Biol. 1993 Feb;120(3):647–655. doi: 10.1083/jcb.120.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES