Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Sep 15;16(18):5687–5696. doi: 10.1093/emboj/16.18.5687

The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors.

D Durocher 1, F Charron 1, R Warren 1, R J Schwartz 1, M Nemer 1
PMCID: PMC1170200  PMID: 9312027

Abstract

The tissue-restricted GATA-4 transcription factor and Nkx2-5 homeodomain protein are two early markers of precardiac cells. Both are essential for heart formation, but neither can initiate cardiogenesis. Overexpression of GATA-4 or Nkx2-5 enhances cardiac development in committed precursors, suggesting each interacts with a cardiac cofactor. We tested whether GATA-4 and Nkx2-5 are cofactors for each other by using transcription and binding assays with the cardiac atrial natriuretic factor (ANF) promoter_the only known target for Nkx2-5. Co-expression of GATA-4 and Nkx2-5 resulted in synergistic activation of the ANF promoter in heterologous cells. The synergy involves physical Nkx2-5-GATA-4 interaction, seen in vitro and in vivo, which maps to the C-terminal zinc finger of GATA-4 and a C-terminus extension; similarly, a C-terminally extended homeodomain of Nkx2-5 is required for GATA-4 binding. Structure/function studies suggest that binding of GATA-4 to the C-terminus autorepressive domain of Nkx2-5 may induce a conformational change that unmasks Nkx2-5 activation domains. GATA-6 cannot substitute for GATA-4 for interaction with Nkx2-5. This interaction may impart functional specificity to GATA factors and provide cooperative crosstalk between two pathways critical for early cardiogenesis. Given the co-expression of GATA proteins and NK2 class members in other tissues, the GATA/Nkx partnership may represent a paradigm for transcription factor interaction during organogenesis.

Full Text

The Full Text of this article is available as a PDF (437.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arceci R. J., King A. A., Simon M. C., Orkin S. H., Wilson D. B. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol. 1993 Apr;13(4):2235–2246. doi: 10.1128/mcb.13.4.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ardati A., Nemer M. A nuclear pathway for alpha 1-adrenergic receptor signaling in cardiac cells. EMBO J. 1993 Dec 15;12(13):5131–5139. doi: 10.1002/j.1460-2075.1993.tb06208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Argentin S., Ardati A., Tremblay S., Lihrmann I., Robitaille L., Drouin J., Nemer M. Developmental stage-specific regulation of atrial natriuretic factor gene transcription in cardiac cells. Mol Cell Biol. 1994 Jan;14(1):777–790. doi: 10.1128/mcb.14.1.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Azpiazu N., Frasch M. tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev. 1993 Jul;7(7B):1325–1340. doi: 10.1101/gad.7.7b.1325. [DOI] [PubMed] [Google Scholar]
  5. Blobel G. A., Simon M. C., Orkin S. H. Rescue of GATA-1-deficient embryonic stem cells by heterologous GATA-binding proteins. Mol Cell Biol. 1995 Feb;15(2):626–633. doi: 10.1128/mcb.15.2.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Briegel K., Lim K. C., Plank C., Beug H., Engel J. D., Zenke M. Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes Dev. 1993 Jun;7(6):1097–1109. doi: 10.1101/gad.7.6.1097. [DOI] [PubMed] [Google Scholar]
  7. Durocher D., Chen C. Y., Ardati A., Schwartz R. J., Nemer M. The atrial natriuretic factor promoter is a downstream target for Nkx-2.5 in the myocardium. Mol Cell Biol. 1996 Sep;16(9):4648–4655. doi: 10.1128/mcb.16.9.4648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Egan C. R., Chung M. A., Allen F. L., Heschl M. F., Van Buskirk C. L., McGhee J. D. A gut-to-pharynx/tail switch in embryonic expression of the Caenorhabditis elegans ges-1 gene centers on two GATA sequences. Dev Biol. 1995 Aug;170(2):397–419. doi: 10.1006/dbio.1995.1225. [DOI] [PubMed] [Google Scholar]
  9. Evans S. M., Yan W., Murillo M. P., Ponce J., Papalopulu N. tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman. Development. 1995 Nov;121(11):3889–3899. doi: 10.1242/dev.121.11.3889. [DOI] [PubMed] [Google Scholar]
  10. Fu Y. H., Marzluf G. A. nit-2, the major nitrogen regulatory gene of Neurospora crassa, encodes a protein with a putative zinc finger DNA-binding domain. Mol Cell Biol. 1990 Mar;10(3):1056–1065. doi: 10.1128/mcb.10.3.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gajewski K., Kim Y., Lee Y. M., Olson E. N., Schulz R. A. D-mef2 is a target for Tinman activation during Drosophila heart development. EMBO J. 1997 Feb 3;16(3):515–522. doi: 10.1093/emboj/16.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grondin B., Bazinet M., Aubry M. The KRAB zinc finger gene ZNF74 encodes an RNA-binding protein tightly associated with the nuclear matrix. J Biol Chem. 1996 Jun 28;271(26):15458–15467. doi: 10.1074/jbc.271.26.15458. [DOI] [PubMed] [Google Scholar]
  13. Grépin C., Dagnino L., Robitaille L., Haberstroh L., Antakly T., Nemer M. A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription. Mol Cell Biol. 1994 May;14(5):3115–3129. doi: 10.1128/mcb.14.5.3115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grépin C., Nemer G., Nemer M. Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development. 1997 Jun;124(12):2387–2395. doi: 10.1242/dev.124.12.2387. [DOI] [PubMed] [Google Scholar]
  15. Guazzi S., Price M., De Felice M., Damante G., Mattei M. G., Di Lauro R. Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J. 1990 Nov;9(11):3631–3639. doi: 10.1002/j.1460-2075.1990.tb07574.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harvey R. P. NK-2 homeobox genes and heart development. Dev Biol. 1996 Sep 15;178(2):203–216. doi: 10.1006/dbio.1996.0212. [DOI] [PubMed] [Google Scholar]
  17. Hawkins M. G., McGhee J. D. elt-2, a second GATA factor from the nematode Caenorhabditis elegans. J Biol Chem. 1995 Jun 16;270(24):14666–14671. doi: 10.1074/jbc.270.24.14666. [DOI] [PubMed] [Google Scholar]
  18. Jiang Y., Evans T. The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev Biol. 1996 Mar 15;174(2):258–270. doi: 10.1006/dbio.1996.0071. [DOI] [PubMed] [Google Scholar]
  19. Kawana M., Lee M. E., Quertermous E. E., Quertermous T. Cooperative interaction of GATA-2 and AP1 regulates transcription of the endothelin-1 gene. Mol Cell Biol. 1995 Aug;15(8):4225–4231. doi: 10.1128/mcb.15.8.4225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kelley C., Blumberg H., Zon L. I., Evans T. GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development. 1993 Jul;118(3):817–827. doi: 10.1242/dev.118.3.817. [DOI] [PubMed] [Google Scholar]
  21. Kuo C. T., Morrisey E. E., Anandappa R., Sigrist K., Lu M. M., Parmacek M. S., Soudais C., Leiden J. M. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997 Apr 15;11(8):1048–1060. doi: 10.1101/gad.11.8.1048. [DOI] [PubMed] [Google Scholar]
  22. Lee K. H., Xu Q., Breitbart R. E. A new tinman-related gene, nkx2.7, anticipates the expression of nkx2.5 and nkx2.3 in zebrafish heart and pharyngeal endoderm. Dev Biol. 1996 Dec 15;180(2):722–731. doi: 10.1006/dbio.1996.0341. [DOI] [PubMed] [Google Scholar]
  23. Lints T. J., Parsons L. M., Hartley L., Lyons I., Harvey R. P. Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development. 1993 Oct;119(2):419–431. doi: 10.1242/dev.119.2.419. [DOI] [PubMed] [Google Scholar]
  24. Lyons I., Parsons L. M., Hartley L., Li R., Andrews J. E., Robb L., Harvey R. P. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 1995 Jul 1;9(13):1654–1666. doi: 10.1101/gad.9.13.1654. [DOI] [PubMed] [Google Scholar]
  25. Molkentin J. D., Kalvakolanu D. V., Markham B. E. Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol. 1994 Jul;14(7):4947–4957. doi: 10.1128/mcb.14.7.4947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Molkentin J. D., Lin Q., Duncan S. A., Olson E. N. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 1997 Apr 15;11(8):1061–1072. doi: 10.1101/gad.11.8.1061. [DOI] [PubMed] [Google Scholar]
  27. Morrisey E. E., Ip H. S., Lu M. M., Parmacek M. S. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol. 1996 Jul 10;177(1):309–322. doi: 10.1006/dbio.1996.0165. [DOI] [PubMed] [Google Scholar]
  28. Newman C. S., Grow M. W., Cleaver O., Chia F., Krieg P. Xbap, a vertebrate gene related to bagpipe, is expressed in developing craniofacial structures and in anterior gut muscle. Dev Biol. 1997 Jan 15;181(2):223–233. doi: 10.1006/dbio.1996.8416. [DOI] [PubMed] [Google Scholar]
  29. Okkema P. G., Fire A. The Caenorhabditis elegans NK-2 class homeoprotein CEH-22 is involved in combinatorial activation of gene expression in pharyngeal muscle. Development. 1994 Aug;120(8):2175–2186. doi: 10.1242/dev.120.8.2175. [DOI] [PubMed] [Google Scholar]
  30. Osada H., Grutz G., Axelson H., Forster A., Rabbitts T. H. Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9585–9589. doi: 10.1073/pnas.92.21.9585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pandolfi P. P., Roth M. E., Karis A., Leonard M. W., Dzierzak E., Grosveld F. G., Engel J. D., Lindenbaum M. H. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet. 1995 Sep;11(1):40–44. doi: 10.1038/ng0995-40. [DOI] [PubMed] [Google Scholar]
  32. Peltenburg L. T., Murre C. Specific residues in the Pbx homeodomain differentially modulate the DNA-binding activity of Hox and Engrailed proteins. Development. 1997 Mar;124(5):1089–1098. doi: 10.1242/dev.124.5.1089. [DOI] [PubMed] [Google Scholar]
  33. Phelan M. L., Rambaldi I., Featherstone M. S. Cooperative interactions between HOX and PBX proteins mediated by a conserved peptide motif. Mol Cell Biol. 1995 Aug;15(8):3989–3997. doi: 10.1128/mcb.15.8.3989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Platt A., Langdon T., Arst H. N., Jr, Kirk D., Tollervey D., Sanchez J. M., Caddick M. X. Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3' untranslated region of its mRNA. EMBO J. 1996 Jun 3;15(11):2791–2801. [PMC free article] [PubMed] [Google Scholar]
  35. Schultheiss T. M., Xydas S., Lassar A. B. Induction of avian cardiac myogenesis by anterior endoderm. Development. 1995 Dec;121(12):4203–4214. doi: 10.1242/dev.121.12.4203. [DOI] [PubMed] [Google Scholar]
  36. Spieth J., Shim Y. H., Lea K., Conrad R., Blumenthal T. elt-1, an embryonically expressed Caenorhabditis elegans gene homologous to the GATA transcription factor family. Mol Cell Biol. 1991 Sep;11(9):4651–4659. doi: 10.1128/mcb.11.9.4651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stanbrough M., Rowen D. W., Magasanik B. Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9450–9454. doi: 10.1073/pnas.92.21.9450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sturm R. A., Das G., Herr W. The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain. Genes Dev. 1988 Dec;2(12A):1582–1599. doi: 10.1101/gad.2.12a.1582. [DOI] [PubMed] [Google Scholar]
  39. Ting C. N., Olson M. C., Barton K. P., Leiden J. M. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature. 1996 Dec 5;384(6608):474–478. doi: 10.1038/384474a0. [DOI] [PubMed] [Google Scholar]
  40. Tonissen K. F., Drysdale T. A., Lints T. J., Harvey R. P., Krieg P. A. XNkx-2.5, a Xenopus gene related to Nkx-2.5 and tinman: evidence for a conserved role in cardiac development. Dev Biol. 1994 Mar;162(1):325–328. doi: 10.1006/dbio.1994.1089. [DOI] [PubMed] [Google Scholar]
  41. Tsai F. Y., Keller G., Kuo F. C., Weiss M., Chen J., Rosenblatt M., Alt F. W., Orkin S. H. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994 Sep 15;371(6494):221–226. doi: 10.1038/371221a0. [DOI] [PubMed] [Google Scholar]
  42. Visvader J. E., Crossley M., Hill J., Orkin S. H., Adams J. M. The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol Cell Biol. 1995 Feb;15(2):634–641. doi: 10.1128/mcb.15.2.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Walters M., Martin D. I. Functional erythroid promoters created by interaction of the transcription factor GATA-1 with CACCC and AP-1/NFE-2 elements. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10444–10448. doi: 10.1073/pnas.89.21.10444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Weiss M. J., Keller G., Orkin S. H. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 1994 May 15;8(10):1184–1197. doi: 10.1101/gad.8.10.1184. [DOI] [PubMed] [Google Scholar]
  45. Weiss M. J., Yu C., Orkin S. H. Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol Cell Biol. 1997 Mar;17(3):1642–1651. doi: 10.1128/mcb.17.3.1642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Whyatt D. J., deBoer E., Grosveld F. The two zinc finger-like domains of GATA-1 have different DNA binding specificities. EMBO J. 1993 Dec 15;12(13):4993–5005. doi: 10.1002/j.1460-2075.1993.tb06193.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Winick J., Abel T., Leonard M. W., Michelson A. M., Chardon-Loriaux I., Holmgren R. A., Maniatis T., Engel J. D. A GATA family transcription factor is expressed along the embryonic dorsoventral axis in Drosophila melanogaster. Development. 1993 Dec;119(4):1055–1065. doi: 10.1242/dev.119.4.1055. [DOI] [PubMed] [Google Scholar]
  48. Yu Y., Li W., Su K., Yussa M., Han W., Perrimon N., Pick L. The nuclear hormone receptor Ftz-F1 is a cofactor for the Drosophila homeodomain protein Ftz. Nature. 1997 Feb 6;385(6616):552–555. doi: 10.1038/385552a0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES