Abstract
The RNP domain is a very common eukaryotic protein domain involved in recognition of a wide range of RNA structures and sequences. Two structures of human U1A in complex with distinct RNA substrates have revealed important aspects of RNP-RNA recognition, but have also raised intriguing questions concerning the origin of binding specificity. The beta-sheet of the domain provides an extensive RNA-binding platform for packing aromatic RNA bases and hydrophobic protein side chains. However, many interactions between functional groups on the single-stranded nucleotides and residues on the beta-sheet surface are potentially common to RNP proteins with diverse specificity and therefore make only limited contribution to molecular discrimination. The refined structure of the U1A complex with the RNA polyadenylation inhibition element reported here clarifies the role of the RNP domain principal specificity determinants (the variable loops) in molecular recognition. The most variable region of RNP proteins, loop 3, plays a crucial role in defining the global geometry of the intermolecular interface. Electrostatic interactions with the RNA phosphodiester backbone involve protein side chains that are unique to U1A and are likely to be important for discrimination. This analysis provides a novel picture of RNA-protein recognition, much closer to our current understanding of protein-protein recognition than that of DNA-protein recognition.
Full Text
The Full Text of this article is available as a PDF (653.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdul-Manan N., O'Malley S. M., Williams K. R. Origins of binding specificity of the A1 heterogeneous nuclear ribonucleoprotein. Biochemistry. 1996 Mar 19;35(11):3545–3554. doi: 10.1021/bi952298p. [DOI] [PubMed] [Google Scholar]
- Aboul-ela F., Karn J., Varani G. The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. J Mol Biol. 1995 Oct 20;253(2):313–332. doi: 10.1006/jmbi.1995.0555. [DOI] [PubMed] [Google Scholar]
- Alber T., Sun D. P., Wilson K., Wozniak J. A., Cook S. P., Matthews B. W. Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme. Nature. 1987 Nov 5;330(6143):41–46. doi: 10.1038/330041a0. [DOI] [PubMed] [Google Scholar]
- Allain F. H., Gubser C. C., Howe P. W., Nagai K., Neuhaus D., Varani G. Specificity of ribonucleoprotein interaction determined by RNA folding during complex formulation. Nature. 1996 Apr 18;380(6575):646–650. doi: 10.1038/380646a0. [DOI] [PubMed] [Google Scholar]
- Avis J. M., Allain F. H., Howe P. W., Varani G., Nagai K., Neuhaus D. Solution structure of the N-terminal RNP domain of U1A protein: the role of C-terminal residues in structure stability and RNA binding. J Mol Biol. 1996 Mar 29;257(2):398–411. doi: 10.1006/jmbi.1996.0171. [DOI] [PubMed] [Google Scholar]
- Bentley R. C., Keene J. D. Recognition of U1 and U2 small nuclear RNAs can be altered by a 5-amino-acid segment in the U2 small nuclear ribonucleoprotein particle (snRNP) B" protein and through interactions with U2 snRNP-A' protein. Mol Cell Biol. 1991 Apr;11(4):1829–1839. doi: 10.1128/mcb.11.4.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biou V., Yaremchuk A., Tukalo M., Cusack S. The 2.9 A crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). Science. 1994 Mar 11;263(5152):1404–1410. doi: 10.1126/science.8128220. [DOI] [PubMed] [Google Scholar]
- Birney E., Kumar S., Krainer A. R. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res. 1993 Dec 25;21(25):5803–5816. doi: 10.1093/nar/21.25.5803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burd C. G., Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994 Jul 29;265(5172):615–621. doi: 10.1126/science.8036511. [DOI] [PubMed] [Google Scholar]
- Burd C. G., Dreyfuss G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J. 1994 Mar 1;13(5):1197–1204. doi: 10.1002/j.1460-2075.1994.tb06369.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caprara M. G., Mohr G., Lambowitz A. M. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core. J Mol Biol. 1996 Apr 5;257(3):512–531. doi: 10.1006/jmbi.1996.0182. [DOI] [PubMed] [Google Scholar]
- Cavarelli J., Rees B., Ruff M., Thierry J. C., Moras D. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase. Nature. 1993 Mar 11;362(6416):181–184. doi: 10.1038/362181a0. [DOI] [PubMed] [Google Scholar]
- Choo Y., Klug A. Physical basis of a protein-DNA recognition code. Curr Opin Struct Biol. 1997 Feb;7(1):117–125. doi: 10.1016/s0959-440x(97)80015-2. [DOI] [PubMed] [Google Scholar]
- Cusack S., Yaremchuk A., Tukalo M. The crystal structure of the ternary complex of T.thermophilus seryl-tRNA synthetase with tRNA(Ser) and a seryl-adenylate analogue reveals a conformational switch in the active site. EMBO J. 1996 Jun 3;15(11):2834–2842. [PMC free article] [PubMed] [Google Scholar]
- Gubser C. C., Varani G. Structure of the polyadenylation regulatory element of the human U1A pre-mRNA 3'-untranslated region and interaction with the U1A protein. Biochemistry. 1996 Feb 20;35(7):2253–2267. doi: 10.1021/bi952319f. [DOI] [PubMed] [Google Scholar]
- Hall K. B. Interaction of RNA hairpins with the human U1A N-terminal RNA binding domain. Biochemistry. 1994 Aug 23;33(33):10076–10088. doi: 10.1021/bi00199a035. [DOI] [PubMed] [Google Scholar]
- Hall K. B., Kranz J. K. Thermodynamics and mutations in RNA-protein interactions. Methods Enzymol. 1995;259:261–281. doi: 10.1016/0076-6879(95)59048-x. [DOI] [PubMed] [Google Scholar]
- Hall K. B., Stump W. T. Interaction of N-terminal domain of U1A protein with an RNA stem/loop. Nucleic Acids Res. 1992 Aug 25;20(16):4283–4290. doi: 10.1093/nar/20.16.4283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodgkin J., Plasterk R. H., Waterston R. H. The nematode Caenorhabditis elegans and its genome. Science. 1995 Oct 20;270(5235):410–414. doi: 10.1126/science.270.5235.410. [DOI] [PubMed] [Google Scholar]
- Hoffman D. W., Query C. C., Golden B. L., White S. W., Keene J. D. RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2495–2499. doi: 10.1073/pnas.88.6.2495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kay L. E., Muhandiram D. R., Farrow N. A., Aubin Y., Forman-Kay J. D. Correlation between dynamics and high affinity binding in an SH2 domain interaction. Biochemistry. 1996 Jan 16;35(2):361–368. doi: 10.1021/bi9522312. [DOI] [PubMed] [Google Scholar]
- Kenan D. J., Query C. C., Keene J. D. RNA recognition: towards identifying determinants of specificity. Trends Biochem Sci. 1991 Jun;16(6):214–220. doi: 10.1016/0968-0004(91)90088-d. [DOI] [PubMed] [Google Scholar]
- LeCuyer K. A., Behlen L. S., Uhlenbeck O. C. Mutagenesis of a stacking contact in the MS2 coat protein-RNA complex. EMBO J. 1996 Dec 16;15(24):6847–6853. [PMC free article] [PubMed] [Google Scholar]
- Nagai K., Oubridge C., Ito N., Avis J., Evans P. The RNP domain: a sequence-specific RNA-binding domain involved in processing and transport of RNA. Trends Biochem Sci. 1995 Jun;20(6):235–240. doi: 10.1016/s0968-0004(00)89024-6. [DOI] [PubMed] [Google Scholar]
- Peterson R. D., Feigon J. Structural change in Rev responsive element RNA of HIV-1 on binding Rev peptide. J Mol Biol. 1996 Dec 20;264(5):863–877. doi: 10.1006/jmbi.1996.0683. [DOI] [PubMed] [Google Scholar]
- Rould M. A., Perona J. J., Steitz T. A. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature. 1991 Jul 18;352(6332):213–218. doi: 10.1038/352213a0. [DOI] [PubMed] [Google Scholar]
- Rould M. A., Perona J. J., Söll D., Steitz T. A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science. 1989 Dec 1;246(4934):1135–1142. doi: 10.1126/science.2479982. [DOI] [PubMed] [Google Scholar]
- Scherly D., Boelens W., Dathan N. A., van Venrooij W. J., Mattaj I. W. Major determinants of the specificity of interaction between small nuclear ribonucleoproteins U1A and U2B'' and their cognate RNAs. Nature. 1990 Jun 7;345(6275):502–506. doi: 10.1038/345502a0. [DOI] [PubMed] [Google Scholar]
- Scherly D., Kambach C., Boelens W., van Venrooij W. J., Mattaj I. W. Conserved amino acid residues within and outside of the N-terminal ribonucleoprotein motif of U1A small nuclear ribonucleoprotein involved in U1 RNA binding. J Mol Biol. 1991 Jun 20;219(4):577–584. doi: 10.1016/0022-2836(91)90651-l. [DOI] [PubMed] [Google Scholar]
- Shamoo Y., Abdul-Manan N., Patten A. M., Crawford J. K., Pellegrini M. C., Williams K. R. Both RNA-binding domains in heterogenous nuclear ribonucleoprotein A1 contribute toward single-stranded-RNA binding. Biochemistry. 1994 Jul 12;33(27):8272–8281. doi: 10.1021/bi00193a014. [DOI] [PubMed] [Google Scholar]
- Stump W. T., Hall K. B. Crosslinking of an iodo-uridine-RNA hairpin to a single site on the human U1A N-terminal RNA binding domain. RNA. 1995 Mar;1(1):55–63. [PMC free article] [PubMed] [Google Scholar]
- Tacke R., Chen Y., Manley J. L. Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1148–1153. doi: 10.1073/pnas.94.4.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tacke R., Manley J. L. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 1995 Jul 17;14(14):3540–3551. doi: 10.1002/j.1460-2075.1995.tb07360.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teunissen S. W., van Gelder C. W., van Venrooij W. J. Probing the 3' UTR structure of U1A mRNA and footprinting analysis of its complex with U1A protein. Biochemistry. 1997 Feb 18;36(7):1782–1789. doi: 10.1021/bi9623237. [DOI] [PubMed] [Google Scholar]
- Tsai D. E., Harper D. S., Keene J. D. U1-snRNP-A protein selects a ten nucleotide consensus sequence from a degenerate RNA pool presented in various structural contexts. Nucleic Acids Res. 1991 Sep 25;19(18):4931–4936. doi: 10.1093/nar/19.18.4931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valegård K., Murray J. B., Stockley P. G., Stonehouse N. J., Liljas L. Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature. 1994 Oct 13;371(6498):623–626. doi: 10.1038/371623a0. [DOI] [PubMed] [Google Scholar]
- Weeks K. M., Cech T. R. Assembly of a ribonucleoprotein catalyst by tertiary structure capture. Science. 1996 Jan 19;271(5247):345–348. doi: 10.1126/science.271.5247.345. [DOI] [PubMed] [Google Scholar]
- Weeks K. M., Cech T. R. Protein facilitation of group I intron splicing by assembly of the catalytic core and the 5' splice site domain. Cell. 1995 Jul 28;82(2):221–230. doi: 10.1016/0092-8674(95)90309-7. [DOI] [PubMed] [Google Scholar]
- Wittekind M., Görlach M., Friedrichs M., Dreyfuss G., Mueller L. 1H, 13C, and 15N NMR assignments and global folding pattern of the RNA-binding domain of the human hnRNP C proteins. Biochemistry. 1992 Jul 14;31(27):6254–6265. doi: 10.1021/bi00142a013. [DOI] [PubMed] [Google Scholar]
- van Gelder C. W., Gunderson S. I., Jansen E. J., Boelens W. C., Polycarpou-Schwarz M., Mattaj I. W., van Venrooij W. J. A complex secondary structure in U1A pre-mRNA that binds two molecules of U1A protein is required for regulation of polyadenylation. EMBO J. 1993 Dec 15;12(13):5191–5200. doi: 10.1002/j.1460-2075.1993.tb06214.x. [DOI] [PMC free article] [PubMed] [Google Scholar]