Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Sep 15;16(18):5775–5783. doi: 10.1093/emboj/16.18.5775

Bacteriophage phi29 DNA replication arrest caused by codirectional collisions with the transcription machinery.

M Elías-Arnanz 1, M Salas 1
PMCID: PMC1170208  PMID: 9312035

Abstract

The consequences on replication of collisions between phi29 DNA polymerase, a monomeric replicase endowed with strand displacement capacity, and the transcription machinery have been studied in vitro. Codirectional collisions with stalled transcription ternary complexes at four different promoters in the phi29 genome were found to block replication fork progression. Upon collision, the DNA polymerase remained on the template and was able to resume elongation once the RNA polymerase was allowed to move. Collisions with RNA polymerase molecules moving in the same direction also interfered with replication, causing a decrease in the replication rate. These results lead to the proposal that in bacteriophage phi29 a transcription complex physically blocks the progression of a replication fork. We suggest that temporal regulation of transcription and the low probability that the replication and transcription processes colocalize in vivo contribute to achieving minimal interference between the two events.

Full Text

The Full Text of this article is available as a PDF (290.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barthelemy I., Mellado R. P., Salas M. In vitro transcription of bacteriophage phi 29 DNA: inhibition of early promoters by the viral replication protein p6. J Virol. 1989 Jan;63(1):460–462. doi: 10.1128/jvi.63.1.460-462.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barthelemy I., Salas M. Characterization of a new prokaryotic transcriptional activator and its DNA recognition site. J Mol Biol. 1989 Jul 20;208(2):225–232. doi: 10.1016/0022-2836(89)90384-7. [DOI] [PubMed] [Google Scholar]
  3. Barthelemy I., Salas M., Mellado R. P. In vivo transcription of bacteriophage phi 29 DNA: transcription termination. J Virol. 1987 May;61(5):1751–1755. doi: 10.1128/jvi.61.5.1751-1755.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blanco L., Bernad A., Esteban J. A., Salas M. DNA-independent deoxynucleotidylation of the phi 29 terminal protein by the phi 29 DNA polymerase. J Biol Chem. 1992 Jan 15;267(2):1225–1230. [PubMed] [Google Scholar]
  5. Blanco L., Bernad A., Lázaro J. M., Martín G., Garmendia C., Salas M. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem. 1989 May 25;264(15):8935–8940. [PubMed] [Google Scholar]
  6. Blanco L., Salas M. Relating structure to function in phi29 DNA polymerase. J Biol Chem. 1996 Apr 12;271(15):8509–8512. doi: 10.1074/jbc.271.15.8509. [DOI] [PubMed] [Google Scholar]
  7. Blanco L., Salas M. Replication of phage phi 29 DNA with purified terminal protein and DNA polymerase: synthesis of full-length phi 29 DNA. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6404–6408. doi: 10.1073/pnas.82.19.6404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brewer B. J., Fangman W. L. A replication fork barrier at the 3' end of yeast ribosomal RNA genes. Cell. 1988 Nov 18;55(4):637–643. doi: 10.1016/0092-8674(88)90222-x. [DOI] [PubMed] [Google Scholar]
  9. Brewer B. J. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell. 1988 Jun 3;53(5):679–686. doi: 10.1016/0092-8674(88)90086-4. [DOI] [PubMed] [Google Scholar]
  10. Deshpande A. M., Newlon C. S. DNA replication fork pause sites dependent on transcription. Science. 1996 May 17;272(5264):1030–1033. doi: 10.1126/science.272.5264.1030. [DOI] [PubMed] [Google Scholar]
  11. French S. Consequences of replication fork movement through transcription units in vivo. Science. 1992 Nov 20;258(5086):1362–1365. doi: 10.1126/science.1455232. [DOI] [PubMed] [Google Scholar]
  12. Gutiérrez C., Freire R., Salas M., Hermoso J. M. Assembly of phage phi 29 genome with viral protein p6 into a compact complex. EMBO J. 1994 Jan 1;13(1):269–276. doi: 10.1002/j.1460-2075.1994.tb06257.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krummel B., Chamberlin M. J. RNA chain initiation by Escherichia coli RNA polymerase. Structural transitions of the enzyme in early ternary complexes. Biochemistry. 1989 Sep 19;28(19):7829–7842. doi: 10.1021/bi00445a045. [DOI] [PubMed] [Google Scholar]
  14. Krummel B., Chamberlin M. J. Structural analysis of ternary complexes of Escherichia coli RNA polymerase. Deoxyribonuclease I footprinting of defined complexes. J Mol Biol. 1992 May 20;225(2):239–250. doi: 10.1016/0022-2836(92)90918-a. [DOI] [PubMed] [Google Scholar]
  15. Krummel B., Chamberlin M. J. Structural analysis of ternary complexes of Escherichia coli RNA polymerase. Individual complexes halted along different transcription units have distinct and unexpected biochemical properties. J Mol Biol. 1992 May 20;225(2):221–237. doi: 10.1016/0022-2836(92)90917-9. [DOI] [PubMed] [Google Scholar]
  16. Linskens M. H., Huberman J. A. Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Nov;8(11):4927–4935. doi: 10.1128/mcb.8.11.4927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Little R. D., Platt T. H., Schildkraut C. L. Initiation and termination of DNA replication in human rRNA genes. Mol Cell Biol. 1993 Oct;13(10):6600–6613. doi: 10.1128/mcb.13.10.6600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu B., Alberts B. M. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science. 1995 Feb 24;267(5201):1131–1137. doi: 10.1126/science.7855590. [DOI] [PubMed] [Google Scholar]
  19. Liu B., Wong M. L., Alberts B. A transcribing RNA polymerase molecule survives DNA replication without aborting its growing RNA chain. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10660–10664. doi: 10.1073/pnas.91.22.10660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu B., Wong M. L., Tinker R. L., Geiduschek E. P., Alberts B. M. The DNA replication fork can pass RNA polymerase without displacing the nascent transcript. Nature. 1993 Nov 4;366(6450):33–39. doi: 10.1038/366033a0. [DOI] [PubMed] [Google Scholar]
  21. Lázaro J. M., Blanco L., Salas M. Purification of bacteriophage phi 29 DNA polymerase. Methods Enzymol. 1995;262:42–49. doi: 10.1016/0076-6879(95)62007-9. [DOI] [PubMed] [Google Scholar]
  22. Monsalve M., Mencia M., Rojo F., Salas M. Activation and repression of transcription at two different phage phi29 promoters are mediated by interaction of the same residues of regulatory protein p4 with RNA polymerase. EMBO J. 1996 Jan 15;15(2):383–391. [PMC free article] [PubMed] [Google Scholar]
  23. Monsalve M., Mencía M., Rojo F., Salas M. Transcription regulation in Bacillus subtilis phage phi 29: expression of the viral promoters throughout the infection cycle. Virology. 1995 Feb 20;207(1):23–31. doi: 10.1006/viro.1995.1048. [DOI] [PubMed] [Google Scholar]
  24. Mosig G., Colowick N. DNA replication of bacteriophage T4 in vivo. Methods Enzymol. 1995;262:587–604. doi: 10.1016/0076-6879(95)62046-x. [DOI] [PubMed] [Google Scholar]
  25. Nossal N. G., Hinton D. M., Hobbs L. J., Spacciapoli P. Purification of bacteriophage T4 DNA replication proteins. Methods Enzymol. 1995;262:560–584. doi: 10.1016/0076-6879(95)62045-1. [DOI] [PubMed] [Google Scholar]
  26. Peñalva M. A., Salas M. Initiation of phage phi 29 DNA replication in vitro: formation of a covalent complex between the terminal protein, p3, and 5'-dAMP. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5522–5526. doi: 10.1073/pnas.79.18.5522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pombo A., Ferreira J., Bridge E., Carmo-Fonseca M. Adenovirus replication and transcription sites are spatially separated in the nucleus of infected cells. EMBO J. 1994 Nov 1;13(21):5075–5085. doi: 10.1002/j.1460-2075.1994.tb06837.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rojo F., Salas M. A DNA curvature can substitute phage phi 29 regulatory protein p4 when acting as a transcriptional repressor. EMBO J. 1991 Nov;10(11):3429–3438. doi: 10.1002/j.1460-2075.1991.tb04907.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sogo J. M., Inciarte M. R., Corral J., Viñuela E., Salas M. RNA polymerase binding sites and transcription map of the DNA of Bacillus subtilis phage phi29. J Mol Biol. 1979 Feb 5;127(4):411–436. doi: 10.1016/0022-2836(79)90230-4. [DOI] [PubMed] [Google Scholar]
  30. Surratt C. K., Milan S. C., Chamberlin M. J. Spontaneous cleavage of RNA in ternary complexes of Escherichia coli RNA polymerase and its significance for the mechanism of transcription. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7983–7987. doi: 10.1073/pnas.88.18.7983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wansink D. G., Manders E. E., van der Kraan I., Aten J. A., van Driel R., de Jong L. RNA polymerase II transcription is concentrated outside replication domains throughout S-phase. J Cell Sci. 1994 Jun;107(Pt 6):1449–1456. doi: 10.1242/jcs.107.6.1449. [DOI] [PubMed] [Google Scholar]
  32. Whiteley H. R., Ramey W. D., Spiegelman G. B., Holder R. D. Modulation of in vivo and in vitro transcription of bacteriophage phi 29 early genes. Virology. 1986 Dec;155(2):392–401. doi: 10.1016/0042-6822(86)90202-3. [DOI] [PubMed] [Google Scholar]
  33. Wiesendanger B., Lucchini R., Koller T., Sogo J. M. Replication fork barriers in the Xenopus rDNA. Nucleic Acids Res. 1994 Nov 25;22(23):5038–5046. doi: 10.1093/nar/22.23.5038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zaballos A., Lázaro J. M., Méndez E., Mellado R. P., Salas M. Effects of internal deletions on the priming activity of the phage phi 29 terminal protein. Gene. 1989 Nov 30;83(2):187–195. doi: 10.1016/0378-1119(89)90104-2. [DOI] [PubMed] [Google Scholar]
  35. Zeigler D. R., Dean D. H. Orientation of genes in the Bacillus subtilis chromosome. Genetics. 1990 Aug;125(4):703–708. doi: 10.1093/genetics/125.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES