Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Nov 3;16(21):6407–6413. doi: 10.1093/emboj/16.21.6407

MAPK inactivation is required for the G2 to M-phase transition of the first mitotic cell cycle.

A Abrieu 1, D Fisher 1, M N Simon 1, M Dorée 1, A Picard 1
PMCID: PMC1170247  PMID: 9351823

Abstract

Down-regulation of MAP kinase (MAPK) is a universal consequence of fertilization in the animal kingdom, although its role is not known. Here we show that MAPK inactivation is essential for embryos, both vertebrate and invertebrate, to enter first mitosis. Suppressing down-regulation of MAPK at fertilization, for example by constitutively activating the upstream MAPK cascade, specifically suppresses cyclin B-cdc2 kinase activation and its consequence, entry into first mitosis. It thus appears that MAPK functions in meiotic maturation by preventing unfertilized eggs from proceeding into parthenogenetic development. The most general effect of artificially maintaining MAPK activity after fertilization is prevention of the G2 to M-phase transition in the first mitotic cell cycle, even though inappropriate reactivation of MAPK after fertilization may lead to metaphase arrest in vertebrates. Advancing the time of MAPK inactivation in fertilized eggs does not, however, speed up their entry into first mitosis. Thus, sustained activity of MAPK during part of the first mitotic cell cycle is not responsible for late entry of fertilized eggs into first mitosis.

Full Text

The Full Text of this article is available as a PDF (278.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrieu A., Dorée M., Picard A. Mitogen-activated protein kinase activation down-regulates a mechanism that inactivates cyclin B-cdc2 kinase in G2-arrested oocytes. Mol Biol Cell. 1997 Feb;8(2):249–261. doi: 10.1091/mbc.8.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abrieu A., Lorca T., Labbé J. C., Morin N., Keyse S., Dorée M. MAP kinase does not inactivate, but rather prevents the cyclin degradation pathway from being turned on in Xenopus egg extracts. J Cell Sci. 1996 Jan;109(Pt 1):239–246. doi: 10.1242/jcs.109.1.239. [DOI] [PubMed] [Google Scholar]
  3. Alessi D. R., Smythe C., Keyse S. M. The human CL100 gene encodes a Tyr/Thr-protein phosphatase which potently and specifically inactivates MAP kinase and suppresses its activation by oncogenic ras in Xenopus oocyte extracts. Oncogene. 1993 Jul;8(7):2015–2020. [PubMed] [Google Scholar]
  4. Chen C. T., Pan B. T. Oncogenic ras stimulates a 96-kDa histone H2b kinase activity in activated Xenopus egg extracts. Correlation with the suppression of p34cdc2 kinase. J Biol Chem. 1994 Nov 11;269(45):28034–28043. [PubMed] [Google Scholar]
  5. Clute P., Masui Y. Microtubule dependence of chromosome cycles in Xenopus laevis blastomeres under the influence of a DNA synthesis inhibitor, aphidicolin. Dev Biol. 1997 May 1;185(1):1–13. doi: 10.1006/dbio.1997.8540. [DOI] [PubMed] [Google Scholar]
  6. Devault A., Fesquet D., Cavadore J. C., Garrigues A. M., Labbé J. C., Lorca T., Picard A., Philippe M., Dorée M. Cyclin A potentiates maturation-promoting factor activation in the early Xenopus embryo via inhibition of the tyrosine kinase that phosphorylates cdc2. J Cell Biol. 1992 Sep;118(5):1109–1120. doi: 10.1083/jcb.118.5.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferrell J. E., Jr, Wu M., Gerhart J. C., Martin G. S. Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol Cell Biol. 1991 Apr;11(4):1965–1971. doi: 10.1128/mcb.11.4.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Furuno N., Ogawa Y., Iwashita J., Nakajo N., Sagata N. Meiotic cell cycle in Xenopus oocytes is independent of cdk2 kinase. EMBO J. 1997 Jul 1;16(13):3860–3865. doi: 10.1093/emboj/16.13.3860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Genevière-Garrigues A. M., Barakat A., Dorée M., Moreau J. L., Picard A. Active cyclin B-cdc2 kinase does not inhibit DNA replication and cannot drive prematurely fertilized sea urchin eggs into mitosis. J Cell Sci. 1995 Jul;108(Pt 7):2693–2703. doi: 10.1242/jcs.108.7.2693. [DOI] [PubMed] [Google Scholar]
  10. Groom L. A., Sneddon A. A., Alessi D. R., Dowd S., Keyse S. M. Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase. EMBO J. 1996 Jul 15;15(14):3621–3632. [PMC free article] [PubMed] [Google Scholar]
  11. Haccard O., Sarcevic B., Lewellyn A., Hartley R., Roy L., Izumi T., Erikson E., Maller J. L. Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase. Science. 1993 Nov 19;262(5137):1262–1265. doi: 10.1126/science.8235656. [DOI] [PubMed] [Google Scholar]
  12. Jones C., Smythe C. Activation of the Xenopus cyclin degradation machinery by full-length cyclin A. J Cell Sci. 1996 May;109(Pt 5):1071–1079. doi: 10.1242/jcs.109.5.1071. [DOI] [PubMed] [Google Scholar]
  13. Kanatani H., Shirai H., Nakanishi K., Kurokawa T. Isolation and indentification on meiosis inducing substance in starfish Asterias amurensis. Nature. 1969 Jan 18;221(5177):273–274. doi: 10.1038/221273a0. [DOI] [PubMed] [Google Scholar]
  14. Karin M., Hunter T. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol. 1995 Jul 1;5(7):747–757. doi: 10.1016/s0960-9822(95)00151-5. [DOI] [PubMed] [Google Scholar]
  15. Karsenti E., Bravo R., Kirschner M. Phosphorylation changes associated with the early cell cycle in Xenopus eggs. Dev Biol. 1987 Feb;119(2):442–453. doi: 10.1016/0012-1606(87)90048-0. [DOI] [PubMed] [Google Scholar]
  16. Kosako H., Gotoh Y., Nishida E. Regulation and function of the MAP kinase cascade in Xenopus oocytes. J Cell Sci Suppl. 1994;18:115–119. doi: 10.1242/jcs.1994.supplement_18.17. [DOI] [PubMed] [Google Scholar]
  17. Kumagai A., Dunphy W. G. Control of the Cdc2/cyclin B complex in Xenopus egg extracts arrested at a G2/M checkpoint with DNA synthesis inhibitors. Mol Biol Cell. 1995 Feb;6(2):199–213. doi: 10.1091/mbc.6.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Labbé J. C., Cavadore J. C., Dorée M. M phase-specific cdc2 kinase: preparation from starfish oocytes and properties. Methods Enzymol. 1991;200:291–301. doi: 10.1016/0076-6879(91)00147-o. [DOI] [PubMed] [Google Scholar]
  19. Lee T. H., Kirschner M. W. An inhibitor of p34cdc2/cyclin B that regulates the G2/M transition in Xenopus extracts. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):352–356. doi: 10.1073/pnas.93.1.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lorca T., Cruzalegui F. H., Fesquet D., Cavadore J. C., Méry J., Means A., Dorée M. Calmodulin-dependent protein kinase II mediates inactivation of MPF and CSF upon fertilization of Xenopus eggs. Nature. 1993 Nov 18;366(6452):270–273. doi: 10.1038/366270a0. [DOI] [PubMed] [Google Scholar]
  21. Lorca T., Galas S., Fesquet D., Devault A., Cavadore J. C., Dorée M. Degradation of the proto-oncogene product p39mos is not necessary for cyclin proteolysis and exit from meiotic metaphase: requirement for a Ca(2+)-calmodulin dependent event. EMBO J. 1991 Aug;10(8):2087–2093. doi: 10.1002/j.1460-2075.1991.tb07741.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lorca T., Labbé J. C., Devault A., Fesquet D., Strausfeld U., Nilsson J., Nygren P. A., Uhlen M., Cavadore J. C., Dorée M. Cyclin A-cdc2 kinase does not trigger but delays cyclin degradation in interphase extracts of amphibian eggs. J Cell Sci. 1992 May;102(Pt 1):55–62. doi: 10.1242/jcs.102.1.55. [DOI] [PubMed] [Google Scholar]
  23. MacNicol A. M., Muslin A. J., Howard E. L., Kikuchi A., MacNicol M. C., Williams L. T. Regulation of Raf-1-dependent signaling during early Xenopus development. Mol Cell Biol. 1995 Dec;15(12):6686–6693. doi: 10.1128/mcb.15.12.6686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Minshull J., Golsteyn R., Hill C. S., Hunt T. The A- and B-type cyclin associated cdc2 kinases in Xenopus turn on and off at different times in the cell cycle. EMBO J. 1990 Sep;9(9):2865–2875. doi: 10.1002/j.1460-2075.1990.tb07476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Minshull J., Sun H., Tonks N. K., Murray A. W. A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell. 1994 Nov 4;79(3):475–486. doi: 10.1016/0092-8674(94)90256-9. [DOI] [PubMed] [Google Scholar]
  26. Morin N., Abrieu A., Lorca T., Martin F., Dorée M. The proteolysis-dependent metaphase to anaphase transition: calcium/calmodulin-dependent protein kinase II mediates onset of anaphase in extracts prepared from unfertilized Xenopus eggs. EMBO J. 1994 Sep 15;13(18):4343–4352. doi: 10.1002/j.1460-2075.1994.tb06754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Murray A. W., Kirschner M. W. Cyclin synthesis drives the early embryonic cell cycle. Nature. 1989 May 25;339(6222):275–280. doi: 10.1038/339275a0. [DOI] [PubMed] [Google Scholar]
  28. Murray A. W. The genetics of cell cycle checkpoints. Curr Opin Genet Dev. 1995 Feb;5(1):5–11. doi: 10.1016/s0959-437x(95)90046-2. [DOI] [PubMed] [Google Scholar]
  29. Murray A. Cell cycle checkpoints. Curr Opin Cell Biol. 1994 Dec;6(6):872–876. doi: 10.1016/0955-0674(94)90059-0. [DOI] [PubMed] [Google Scholar]
  30. Pan B. T., Chen C. T., Lin S. M. Oncogenic Ras blocks cell cycle progression and inhibits p34cdc2 kinase in activated Xenopus egg extracts. J Biol Chem. 1994 Feb 25;269(8):5968–5975. [PubMed] [Google Scholar]
  31. Picard A., Galas S., Peaucellier G., Dorée M. Newly assembled cyclin B-cdc2 kinase is required to suppress DNA replication between meiosis I and meiosis II in starfish oocytes. EMBO J. 1996 Jul 15;15(14):3590–3598. [PMC free article] [PubMed] [Google Scholar]
  32. Picard A., Harricane M. C., Labbe J. C., Doree M. Germinal vesicle components are not required for the cell-cycle oscillator of the early starfish embryo. Dev Biol. 1988 Jul;128(1):121–128. doi: 10.1016/0012-1606(88)90273-4. [DOI] [PubMed] [Google Scholar]
  33. Rempel R. E., Sleight S. B., Maller J. L. Maternal Xenopus Cdk2-cyclin E complexes function during meiotic and early embryonic cell cycles that lack a G1 phase. J Biol Chem. 1995 Mar 24;270(12):6843–6855. doi: 10.1074/jbc.270.12.6843. [DOI] [PubMed] [Google Scholar]
  34. Roy L. M., Swenson K. I., Walker D. H., Gabrielli B. G., Li R. S., Piwnica-Worms H., Maller J. L. Activation of p34cdc2 kinase by cyclin A. J Cell Biol. 1991 May;113(3):507–514. doi: 10.1083/jcb.113.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sagata N., Watanabe N., Vande Woude G. F., Ikawa Y. The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature. 1989 Nov 30;342(6249):512–518. doi: 10.1038/342512a0. [DOI] [PubMed] [Google Scholar]
  36. Sagata N. What does Mos do in oocytes and somatic cells? Bioessays. 1997 Jan;19(1):13–21. doi: 10.1002/bies.950190105. [DOI] [PubMed] [Google Scholar]
  37. Schuetz A. W. Cytoplasmic activation of starfish oocytes by sperm and divalent ionophore A-23187. J Cell Biol. 1975 Jul;66(1):86–94. doi: 10.1083/jcb.66.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shibuya E. K., Boulton T. G., Cobb M. H., Ruderman J. V. Activation of p42 MAP kinase and the release of oocytes from cell cycle arrest. EMBO J. 1992 Nov;11(11):3963–3975. doi: 10.1002/j.1460-2075.1992.tb05490.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Solomon M. J., Glotzer M., Lee T. H., Philippe M., Kirschner M. W. Cyclin activation of p34cdc2. Cell. 1990 Nov 30;63(5):1013–1024. doi: 10.1016/0092-8674(90)90504-8. [DOI] [PubMed] [Google Scholar]
  40. Tachibana K., Machida T., Nomura Y., Kishimoto T. MAP kinase links the fertilization signal transduction pathway to the G1/S-phase transition in starfish eggs. EMBO J. 1997 Jul 16;16(14):4333–4339. doi: 10.1093/emboj/16.14.4333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Takenaka K., Gotoh Y., Nishida E. MAP kinase is required for the spindle assembly checkpoint but is dispensable for the normal M phase entry and exit in Xenopus egg cell cycle extracts. J Cell Biol. 1997 Mar 10;136(5):1091–1097. doi: 10.1083/jcb.136.5.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Verlhac M. H., Kubiak J. Z., Clarke H. J., Maro B. Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development. 1994 Apr;120(4):1017–1025. doi: 10.1242/dev.120.4.1017. [DOI] [PubMed] [Google Scholar]
  43. Wagenaar E. B. The timing of synthesis of proteins required for mitosis in the cell cycle of the sea urchin embryo. Exp Cell Res. 1983 Apr 1;144(2):393–403. doi: 10.1016/0014-4827(83)90419-6. [DOI] [PubMed] [Google Scholar]
  44. Wang X. M., Zhai Y., Ferrell J. E., Jr A role for mitogen-activated protein kinase in the spindle assembly checkpoint in XTC cells. J Cell Biol. 1997 Apr 21;137(2):433–443. doi: 10.1083/jcb.137.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Waskiewicz A. J., Cooper J. A. Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Curr Opin Cell Biol. 1995 Dec;7(6):798–805. doi: 10.1016/0955-0674(95)80063-8. [DOI] [PubMed] [Google Scholar]
  46. Watanabe N., Hunt T., Ikawa Y., Sagata N. Independent inactivation of MPF and cytostatic factor (Mos) upon fertilization of Xenopus eggs. Nature. 1991 Jul 18;352(6332):247–248. doi: 10.1038/352247a0. [DOI] [PubMed] [Google Scholar]
  47. Weber M., Kubiak J. Z., Arlinghaus R. B., Pines J., Maro B. c-mos proto-oncogene product is partly degraded after release from meiotic arrest and persists during interphase in mouse zygotes. Dev Biol. 1991 Nov;148(1):393–397. doi: 10.1016/0012-1606(91)90347-6. [DOI] [PubMed] [Google Scholar]
  48. Wu Y., Han M., Guan K. L. MEK-2, a Caenorhabditis elegans MAP kinase kinase, functions in Ras-mediated vulval induction and other developmental events. Genes Dev. 1995 Mar 15;9(6):742–755. doi: 10.1101/gad.9.6.742. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES