Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Nov 3;16(21):6510–6520. doi: 10.1093/emboj/16.21.6510

Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells.

M Tada 1, T Tada 1, L Lefebvre 1, S C Barton 1, M A Surani 1
PMCID: PMC1170256  PMID: 9351832

Abstract

Genomic reprogramming of primordial germ cells (PGCs), which includes genome-wide demethylation, prevents aberrant epigenetic modifications from being transmitted to subsequent generations. This process also ensures that homologous chromosomes first acquire an identical epigenetic status before an appropriate switch in the imprintable loci in the female and male germ lines. Embryonic germ (EG) cells have a similar epigenotype to PGCs from which they are derived. We used EG cells to investigate the mechanism of epigenetic modifications in the germ line by analysing the effects on a somatic nucleus in the EG-thymic lymphocyte hybrid cells. There were striking changes in methylation of the somatic nucleus, resulting in demethylation of several imprinted and non-imprinted genes. These epigenetic modifications were heritable and affected gene expression as judged by re-activation of the silent maternal allele of Peg1/Mest imprinted gene in the somatic nucleus. This remarkable change in the epigenotype of the somatic nucleus is consistent with the observed pluripotency of the EG-somatic hybrid cells as they differentiated into a variety of tissues in chimeric embryos. The epigenetic modifications observed in EG-somatic cell hybrids in vitro are comparable to the reprogramming events that occur during germ cell development.

Full Text

The Full Text of this article is available as a PDF (519.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen N. D., Barton S. C., Hilton K., Norris M. L., Surani M. A. A functional analysis of imprinting in parthenogenetic embryonic stem cells. Development. 1994 Jun;120(6):1473–1482. doi: 10.1242/dev.120.6.1473. [DOI] [PubMed] [Google Scholar]
  2. Bartolomei M. S., Zemel S., Tilghman S. M. Parental imprinting of the mouse H19 gene. Nature. 1991 May 9;351(6322):153–155. doi: 10.1038/351153a0. [DOI] [PubMed] [Google Scholar]
  3. Boshart M., Nitsch D., Schütz G. Extinction of gene expression in somatic cell hybrids--a reflection of important regulatory mechanisms? Trends Genet. 1993 Jul;9(7):240–245. doi: 10.1016/0168-9525(93)90088-y. [DOI] [PubMed] [Google Scholar]
  4. Brandeis M., Kafri T., Ariel M., Chaillet J. R., McCarrey J., Razin A., Cedar H. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J. 1993 Sep;12(9):3669–3677. doi: 10.1002/j.1460-2075.1993.tb06041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chaillet J. R., Vogt T. F., Beier D. R., Leder P. Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell. 1991 Jul 12;66(1):77–83. doi: 10.1016/0092-8674(91)90140-t. [DOI] [PubMed] [Google Scholar]
  6. Efstratiadis A. Parental imprinting of autosomal mammalian genes. Curr Opin Genet Dev. 1994 Apr;4(2):265–280. doi: 10.1016/s0959-437x(05)80054-1. [DOI] [PubMed] [Google Scholar]
  7. Ferguson-Smith A. C., Sasaki H., Cattanach B. M., Surani M. A. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature. 1993 Apr 22;362(6422):751–755. doi: 10.1038/362751a0. [DOI] [PubMed] [Google Scholar]
  8. Forejt J., Gregorová S., Dohnal K., Nosek J. Gene expression of differentiated parent in teratocarcinoma cell hybrids. Repression or reprogramming? Cell Differ. 1984 Dec;15(2-4):229–234. doi: 10.1016/0045-6039(84)90079-4. [DOI] [PubMed] [Google Scholar]
  9. Frank D., Keshet I., Shani M., Levine A., Razin A., Cedar H. Demethylation of CpG islands in embryonic cells. Nature. 1991 May 16;351(6323):239–241. doi: 10.1038/351239a0. [DOI] [PubMed] [Google Scholar]
  10. Friedrich G., Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 1991 Sep;5(9):1513–1523. doi: 10.1101/gad.5.9.1513. [DOI] [PubMed] [Google Scholar]
  11. Hatada I., Mukai T. Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nat Genet. 1995 Oct;11(2):204–206. doi: 10.1038/ng1095-204. [DOI] [PubMed] [Google Scholar]
  12. Ingraham H. A., Lawless G. M., Evans G. A. The mouse Thy-1.2 glycoprotein gene: complete sequence and identification of an unusual promoter. J Immunol. 1986 Feb 15;136(4):1482–1489. [PubMed] [Google Scholar]
  13. James R. M., Klerkx A. H., Keighren M., Flockhart J. H., West J. D. Restricted distribution of tetraploid cells in mouse tetraploid<==>diploid chimaeras. Dev Biol. 1995 Jan;167(1):213–226. doi: 10.1006/dbio.1995.1018. [DOI] [PubMed] [Google Scholar]
  14. Kafri T., Ariel M., Brandeis M., Shemer R., Urven L., McCarrey J., Cedar H., Razin A. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev. 1992 May;6(5):705–714. doi: 10.1101/gad.6.5.705. [DOI] [PubMed] [Google Scholar]
  15. Kafri T., Gao X., Razin A. Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10558–10562. doi: 10.1073/pnas.90.22.10558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaneko-Ishino T., Kuroiwa Y., Miyoshi N., Kohda T., Suzuki R., Yokoyama M., Viville S., Barton S. C., Ishino F., Surani M. A. Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat Genet. 1995 Sep;11(1):52–59. doi: 10.1038/ng0995-52. [DOI] [PubMed] [Google Scholar]
  17. Kono T., Obata Y., Yoshimzu T., Nakahara T., Carroll J. Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat Genet. 1996 May;13(1):91–94. doi: 10.1038/ng0596-91. [DOI] [PubMed] [Google Scholar]
  18. Kuroiwa Y., Kaneko-Ishino T., Kagitani F., Kohda T., Li L. L., Tada M., Suzuki R., Yokoyama M., Shiroishi T., Wakana S. Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nat Genet. 1996 Feb;12(2):186–190. doi: 10.1038/ng0296-186. [DOI] [PubMed] [Google Scholar]
  19. Labosky P. A., Barlow D. P., Hogan B. L. Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development. 1994 Nov;120(11):3197–3204. doi: 10.1242/dev.120.11.3197. [DOI] [PubMed] [Google Scholar]
  20. Latham K. E., Doherty A. S., Scott C. D., Schultz R. M. Igf2r and Igf2 gene expression in androgenetic, gynogenetic, and parthenogenetic preimplantation mouse embryos: absence of regulation by genomic imprinting. Genes Dev. 1994 Feb 1;8(3):290–299. doi: 10.1101/gad.8.3.290. [DOI] [PubMed] [Google Scholar]
  21. Lefebvre L., Viville S., Barton S. C., Ishino F., Surani M. A. Genomic structure and parent-of-origin-specific methylation of Peg1. Hum Mol Genet. 1997 Oct;6(11):1907–1915. doi: 10.1093/hmg/6.11.1907. [DOI] [PubMed] [Google Scholar]
  22. Lei H., Oh S. P., Okano M., Jüttermann R., Goss K. A., Jaenisch R., Li E. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development. 1996 Oct;122(10):3195–3205. doi: 10.1242/dev.122.10.3195. [DOI] [PubMed] [Google Scholar]
  23. Li E., Beard C., Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993 Nov 25;366(6453):362–365. doi: 10.1038/366362a0. [DOI] [PubMed] [Google Scholar]
  24. Mann J. R., Stewart C. L. Development to term of mouse androgenetic aggregation chimeras. Development. 1991 Dec;113(4):1325–1333. doi: 10.1242/dev.113.4.1325. [DOI] [PubMed] [Google Scholar]
  25. Martin G. M., Ogburn C. E., Au K., Disteche C. M. Altered differentiation, indefinite growth potential, diminished tumorigenicity, and suppressed chimerization potential of hybrids between mouse teratocarcinoma cells and thymocytes. J Exp Pathol. 1984;1(2):103–133. [PubMed] [Google Scholar]
  26. Matsui Y., Zsebo K., Hogan B. L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell. 1992 Sep 4;70(5):841–847. doi: 10.1016/0092-8674(92)90317-6. [DOI] [PubMed] [Google Scholar]
  27. Miller R. A., Ruddle F. H. Pluripotent teratocarcinoma-thymus somatic cell hybrids. Cell. 1976 Sep;9(1):45–55. doi: 10.1016/0092-8674(76)90051-9. [DOI] [PubMed] [Google Scholar]
  28. Miller R. A., Ruddle F. H. Properties of teratocarcinoma-thymus somatic cell hybrids. Somatic Cell Genet. 1977 May;3(3):247–261. doi: 10.1007/BF01538744. [DOI] [PubMed] [Google Scholar]
  29. Monk M., Boubelik M., Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development. 1987 Mar;99(3):371–382. doi: 10.1242/dev.99.3.371. [DOI] [PubMed] [Google Scholar]
  30. Monk M., McLaren A. X-chromosome activity in foetal germ cells of the mouse. J Embryol Exp Morphol. 1981 Jun;63:75–84. [PubMed] [Google Scholar]
  31. Pietras D. F., Bennett K. L., Siracusa L. D., Woodworth-Gutai M., Chapman V. M., Gross K. W., Kane-Haas C., Hastie N. D. Construction of a small Mus musculus repetitive DNA library: identification of a new satellite sequence in Mus musculus. Nucleic Acids Res. 1983 Oct 25;11(20):6965–6983. doi: 10.1093/nar/11.20.6965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sasaki H., Jones P. A., Chaillet J. R., Ferguson-Smith A. C., Barton S. C., Reik W., Surani M. A. Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene. Genes Dev. 1992 Oct;6(10):1843–1856. doi: 10.1101/gad.6.10.1843. [DOI] [PubMed] [Google Scholar]
  33. Singer-Sam J., Grant M., LeBon J. M., Okuyama K., Chapman V., Monk M., Riggs A. D. Use of a HpaII-polymerase chain reaction assay to study DNA methylation in the Pgk-1 CpG island of mouse embryos at the time of X-chromosome inactivation. Mol Cell Biol. 1990 Sep;10(9):4987–4989. doi: 10.1128/mcb.10.9.4987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stewart C. L., Gadi I., Bhatt H. Stem cells from primordial germ cells can reenter the germ line. Dev Biol. 1994 Feb;161(2):626–628. doi: 10.1006/dbio.1994.1058. [DOI] [PubMed] [Google Scholar]
  35. Stewart C. L., Stuhlmann H., Jähner D., Jaenisch R. De novo methylation, expression, and infectivity of retroviral genomes introduced into embryonal carcinoma cells. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4098–4102. doi: 10.1073/pnas.79.13.4098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stöger R., Kubicka P., Liu C. G., Kafri T., Razin A., Cedar H., Barlow D. P. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell. 1993 Apr 9;73(1):61–71. doi: 10.1016/0092-8674(93)90160-r. [DOI] [PubMed] [Google Scholar]
  37. Szabó P. E., Mann J. R. Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev. 1995 Aug 1;9(15):1857–1868. doi: 10.1101/gad.9.15.1857. [DOI] [PubMed] [Google Scholar]
  38. Takagi N., Yoshida M. A., Sugawara O., Sasaki M. Reversal of X-inactivation in female mouse somatic cells hybridized with murine teratocarcinoma stem cells in vitro. Cell. 1983 Oct;34(3):1053–1062. doi: 10.1016/0092-8674(83)90563-9. [DOI] [PubMed] [Google Scholar]
  39. Tremblay K. D., Saam J. R., Ingram R. S., Tilghman S. M., Bartolomei M. S. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat Genet. 1995 Apr;9(4):407–413. doi: 10.1038/ng0495-407. [DOI] [PubMed] [Google Scholar]
  40. Ueda T., Yamazaki K., Suzuki R., Fujimoto H., Sasaki H., Sakaki Y., Higashinakagawa T. Parental methylation patterns of a transgenic locus in adult somatic tissues are imprinted during gametogenesis. Development. 1992 Dec;116(4):831–839. doi: 10.1242/dev.116.4.831. [DOI] [PubMed] [Google Scholar]
  41. Weiss A., Keshet I., Razin A., Cedar H. DNA demethylation in vitro: involvement of RNA. Cell. 1996 Sep 6;86(5):709–718. doi: 10.1016/s0092-8674(00)80146-4. [DOI] [PubMed] [Google Scholar]
  42. Yeivin A., Razin A. Gene methylation patterns and expression. EXS. 1993;64:523–568. doi: 10.1007/978-3-0348-9118-9_24. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES