Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Nov 17;16(22):6667–6675. doi: 10.1093/emboj/16.22.6667

Parasite and mammalian GPI biosynthetic pathways can be distinguished using synthetic substrate analogues.

T K Smith 1, D K Sharma 1, A Crossman 1, A Dix 1, J S Brimacombe 1, M A Ferguson 1
PMCID: PMC1170271  PMID: 9362481

Abstract

Glycosylphosphatidylinositol (GPI) structures are attached to many cell surface glycoproteins in lower and higher eukaryotes. GPI structures are particularly abundant in trypanosomatid parasites where they can be found attached to complex phosphosaccharides, as well as to glycoproteins, and as mature surface glycolipids. The high density of GPI structures at all life-cycle stages of African trypanosomes and Leishmania suggests that the GPI biosynthetic pathway might be a reasonable target for the development of anti-parasite drugs. In this paper we show that synthetic analogues of early GPI intermediates having the 2-hydroxyl group of the D-myo-inositol residue methylated are recognized and mannosylated by the GPI biosynthetic pathways of Trypanosoma brucei and Leishmania major but not by that of human (HeLa) cells. These findings suggest that the discovery and development of specific inhibitors of parasite GPI biosynthesis are attainable goals. Moreover, they demonstrate that inositol acylation is required for mannosylation in the HeLa cell GPI biosynthetic pathway, whereas it is required for ethanolamine phosphate addition in the T.brucei GPI biosynthetic pathway.

Full Text

The Full Text of this article is available as a PDF (316.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhattacharya A., Prasad R., Sacks D. L. Identification and partial characterization of a lipophosphoglycan from a pathogenic strain of Entamoeba histolytica. Mol Biochem Parasitol. 1992 Nov;56(1):161–168. doi: 10.1016/0166-6851(92)90163-e. [DOI] [PubMed] [Google Scholar]
  2. Brown G. M., Millar A. R., Masterson C., Brimacombe J. S., Nikolaev A. V., Ferguson M. A. Synthetic phospho-oligosaccharide fragments of lipophosphoglycan as acceptors for Leishmania major alpha-D-mannosylphosphate transferase. Eur J Biochem. 1996 Dec 1;242(2):410–416. doi: 10.1111/j.1432-1033.1996.0410r.x. [DOI] [PubMed] [Google Scholar]
  3. Buxbaum L. U., Milne K. G., Werbovetz K. A., Englund P. T. Myristate exchange on the Trypanosoma brucei variant surface glycoprotein. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1178–1183. doi: 10.1073/pnas.93.3.1178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cross G. A. Antigenic variation in trypanosomes: secrets surface slowly. Bioessays. 1996 Apr;18(4):283–291. doi: 10.1002/bies.950180406. [DOI] [PubMed] [Google Scholar]
  5. Doering T. L., Masterson W. J., Englund P. T., Hart G. W. Biosynthesis of the glycosyl phosphatidylinositol membrane anchor of the trypanosome variant surface glycoprotein. Origin of the non-acetylated glucosamine. J Biol Chem. 1989 Jul 5;264(19):11168–11173. [PubMed] [Google Scholar]
  6. Doerrler W. T., Ye J., Falck J. R., Lehrman M. A. Acylation of glucosaminyl phosphatidylinositol revisited. Palmitoyl-CoA dependent palmitoylation of the inositol residue of a synthetic dioctanoyl glucosaminyl phosphatidylinositol by hamster membranes permits efficient mannosylation of the glucosamine residue. J Biol Chem. 1996 Oct 25;271(43):27031–27038. doi: 10.1074/jbc.271.43.27031. [DOI] [PubMed] [Google Scholar]
  7. Englund P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem. 1993;62:121–138. doi: 10.1146/annurev.bi.62.070193.001005. [DOI] [PubMed] [Google Scholar]
  8. Ferguson M. A., Low M. G., Cross G. A. Glycosyl-sn-1,2-dimyristylphosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein. J Biol Chem. 1985 Nov 25;260(27):14547–14555. [PubMed] [Google Scholar]
  9. Gerold P., Dieckmann-Schuppert A., Schwarz R. T. Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malarial parasite, Plasmodium falciparum. Candidates for plasmodial glycosylphosphatidylinositol membrane anchor precursors and pathogenicity factors. J Biol Chem. 1994 Jan 28;269(4):2597–2606. [PubMed] [Google Scholar]
  10. Gerold P., Schofield L., Blackman M. J., Holder A. A., Schwarz R. T. Structural analysis of the glycosyl-phosphatidylinositol membrane anchor of the merozoite surface proteins-1 and -2 of Plasmodium falciparum. Mol Biochem Parasitol. 1996 Jan;75(2):131–143. doi: 10.1016/0166-6851(95)02518-9. [DOI] [PubMed] [Google Scholar]
  11. Güther M. L., Ferguson M. A. The role of inositol acylation and inositol deacylation in GPI biosynthesis in Trypanosoma brucei. EMBO J. 1995 Jul 3;14(13):3080–3093. doi: 10.1002/j.1460-2075.1995.tb07311.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Güther M. L., Masterson W. J., Ferguson M. A. The effects of phenylmethylsulfonyl fluoride on inositol-acylation and fatty acid remodeling in African trypanosomes. J Biol Chem. 1994 Jul 15;269(28):18694–18701. [PubMed] [Google Scholar]
  13. Güther M. L., Treumann A., Ferguson M. A. Molecular species analysis and quantification of the glycosylphosphatidylinositol intermediate glycolipid C from Trypanosoma brucei. Mol Biochem Parasitol. 1996 May;77(2):137–145. doi: 10.1016/0166-6851(96)02585-6. [DOI] [PubMed] [Google Scholar]
  14. Heise N., Raper J., Buxbaum L. U., Peranovich T. M., de Almeida M. L. Identification of complete precursors for the glycosylphosphatidylinositol protein anchors of Trypanosoma cruzi. J Biol Chem. 1996 Jul 12;271(28):16877–16887. doi: 10.1074/jbc.271.28.16877. [DOI] [PubMed] [Google Scholar]
  15. Hirose S., Prince G. M., Sevlever D., Ravi L., Rosenberry T. L., Ueda E., Medof M. E. Characterization of putative glycoinositol phospholipid anchor precursors in mammalian cells. Localization of phosphoethanolamine. J Biol Chem. 1992 Aug 25;267(24):16968–16974. [PubMed] [Google Scholar]
  16. Hirose S., Ravi L., Hazra S. V., Medof M. E. Assembly and deacetylation of N-acetylglucosaminyl-plasmanylinositol in normal and affected paroxysmal nocturnal hemoglobinuria cells. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3762–3766. doi: 10.1073/pnas.88.9.3762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kamitani T., Menon A. K., Hallaq Y., Warren C. D., Yeh E. T. Complexity of ethanolamine phosphate addition in the biosynthesis of glycosylphosphatidylinositol anchors in mammalian cells. J Biol Chem. 1992 Dec 5;267(34):24611–24619. [PubMed] [Google Scholar]
  18. Masterson W. J., Doering T. L., Hart G. W., Englund P. T. A novel pathway for glycan assembly: biosynthesis of the glycosyl-phosphatidylinositol anchor of the trypanosome variant surface glycoprotein. Cell. 1989 Mar 10;56(5):793–800. doi: 10.1016/0092-8674(89)90684-3. [DOI] [PubMed] [Google Scholar]
  19. Masterson W. J., Raper J., Doering T. L., Hart G. W., Englund P. T. Fatty acid remodeling: a novel reaction sequence in the biosynthesis of trypanosome glycosyl phosphatidylinositol membrane anchors. Cell. 1990 Jul 13;62(1):73–80. doi: 10.1016/0092-8674(90)90241-6. [DOI] [PubMed] [Google Scholar]
  20. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McConville M. J., Schnur L. F., Jaffe C., Schneider P. Structure of Leishmania lipophosphoglycan: inter- and intra-specific polymorphism in Old World species. Biochem J. 1995 Sep 15;310(Pt 3):807–818. doi: 10.1042/bj3100807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Medof M. E., Nagarajan S., Tykocinski M. L. Cell-surface engineering with GPI-anchored proteins. FASEB J. 1996 Apr;10(5):574–586. doi: 10.1096/fasebj.10.5.8621057. [DOI] [PubMed] [Google Scholar]
  23. Menon A. K., Schwarz R. T., Mayor S., Cross G. A. Cell-free synthesis of glycosyl-phosphatidylinositol precursors for the glycolipid membrane anchor of Trypanosoma brucei variant surface glycoproteins. Structural characterization of putative biosynthetic intermediates. J Biol Chem. 1990 Jun 5;265(16):9033–9042. [PubMed] [Google Scholar]
  24. Milne K. G., Ferguson M. A., Masterson W. J. Inhibition of the GlcNAc transferase of the glycosylphosphatidylinositol anchor biosynthesis in African trypanosomes. Eur J Biochem. 1992 Sep 1;208(2):309–314. doi: 10.1111/j.1432-1033.1992.tb17188.x. [DOI] [PubMed] [Google Scholar]
  25. Milne K. G., Field R. A., Masterson W. J., Cottaz S., Brimacombe J. S., Ferguson M. A. Partial purification and characterization of the N-acetylglucosaminyl-phosphatidylinositol de-N-acetylase of glycosylphosphatidylinositol anchor biosynthesis in African trypanosomes. J Biol Chem. 1994 Jun 10;269(23):16403–16408. [PubMed] [Google Scholar]
  26. Mohney R. P., Knez J. J., Ravi L., Sevlever D., Rosenberry T. L., Hirose S., Medof M. E. Glycoinositol phospholipid anchor-defective K562 mutants with biochemical lesions distinct from those in Thy-1- murine lymphoma mutants. J Biol Chem. 1994 Mar 4;269(9):6536–6542. [PubMed] [Google Scholar]
  27. Proudfoot L., Schneider P., Ferguson M. A., McConville M. J. Biosynthesis of the glycolipid anchor of lipophosphoglycan and the structurally related glycoinositolphospholipids from Leishmania major. Biochem J. 1995 May 15;308(Pt 1):45–55. doi: 10.1042/bj3080045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Puoti A., Conzelmann A. Characterization of abnormal free glycophosphatidylinositols accumulating in mutant lymphoma cells of classes B, E, F, and H. J Biol Chem. 1993 Apr 5;268(10):7215–7224. [PubMed] [Google Scholar]
  29. Ralton J. E., Milne K. G., Güther M. L., Field R. A., Ferguson M. A. The mechanism of inhibition of glycosylphosphatidylinositol anchor biosynthesis in Trypanosoma brucei by mannosamine. J Biol Chem. 1993 Nov 15;268(32):24183–24189. [PubMed] [Google Scholar]
  30. Redman C. A., Schneider P., Mehlert A., Ferguson M. A. The glycoinositol-phospholipids of Phytomonas. Biochem J. 1995 Oct 15;311(Pt 2):495–503. doi: 10.1042/bj3110495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Singh B. N., Beach D. H., Lindmark D. G., Costello C. E. Identification of the lipid moiety and further characterization of the novel lipophosphoglycan-like glycoconjugates of Trichomonas vaginalis and Trichomonas foetus. Arch Biochem Biophys. 1994 Mar;309(2):273–280. doi: 10.1006/abbi.1994.1113. [DOI] [PubMed] [Google Scholar]
  32. Sipos G., Puoti A., Conzelmann A. Glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae: absence of ceramides from complete precursor glycolipids. EMBO J. 1994 Jun 15;13(12):2789–2796. doi: 10.1002/j.1460-2075.1994.tb06572.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Smith T. K., Cottaz S., Brimacombe J. S., Ferguson M. A. Substrate specificity of the dolichol phosphate mannose: glucosaminyl phosphatidylinositol alpha1-4-mannosyltransferase of the glycosylphosphatidylinositol biosynthetic pathway of African trypanosomes. J Biol Chem. 1996 Mar 15;271(11):6476–6482. doi: 10.1074/jbc.271.11.6476. [DOI] [PubMed] [Google Scholar]
  34. Smith T. K., Milne F. C., Sharma D. K., Crossman A., Brimacombe J. S., Ferguson M. A. Early steps in glycosylphosphatidylinositol biosynthesis in Leishmania major. Biochem J. 1997 Sep 1;326(Pt 2):393–400. doi: 10.1042/bj3260393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stevens V. L. Biosynthesis of glycosylphosphatidylinositol membrane anchors. Biochem J. 1995 Sep 1;310(Pt 2):361–370. doi: 10.1042/bj3100361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stevens V. L. Regulation of glycosylphosphatidylinositol biosynthesis by GTP. Stimulation of N-acetylglucosamine-phosphatidylinositol deacetylation. J Biol Chem. 1993 May 5;268(13):9718–9724. [PubMed] [Google Scholar]
  37. Stevens V. L., Zhang H. Coenzyme A dependence of glycosylphosphatidylinositol biosynthesis in a mammalian cell-free system. J Biol Chem. 1994 Dec 16;269(50):31397–31403. [PubMed] [Google Scholar]
  38. Takeda J., Kinoshita T. GPI-anchor biosynthesis. Trends Biochem Sci. 1995 Sep;20(9):367–371. doi: 10.1016/s0968-0004(00)89078-7. [DOI] [PubMed] [Google Scholar]
  39. Tomavo S., Dubremetz J. F., Schwarz R. T. Biosynthesis of glycolipid precursors for glycosylphosphatidylinositol membrane anchors in a Toxoplasma gondii cell-free system. J Biol Chem. 1992 Oct 25;267(30):21446–21458. [PubMed] [Google Scholar]
  40. Tomavo S., Schwarz R. T., Dubremetz J. F. Evidence for glycosyl-phosphatidylinositol anchoring of Toxoplasma gondii major surface antigens. Mol Cell Biol. 1989 Oct;9(10):4576–4580. doi: 10.1128/mcb.9.10.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Treumann A., Lifely M. R., Schneider P., Ferguson M. A. Primary structure of CD52. J Biol Chem. 1995 Mar 17;270(11):6088–6099. doi: 10.1074/jbc.270.11.6088. [DOI] [PubMed] [Google Scholar]
  42. Treumann A., Zitzmann N., Hülsmeier A., Prescott A. R., Almond A., Sheehan J., Ferguson M. A. Structural characterisation of two forms of procyclic acidic repetitive protein expressed by procyclic forms of Trypanosoma brucei. J Mol Biol. 1997 Jun 20;269(4):529–547. doi: 10.1006/jmbi.1997.1066. [DOI] [PubMed] [Google Scholar]
  43. Turco S. J., Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol. 1992;46:65–94. doi: 10.1146/annurev.mi.46.100192.000433. [DOI] [PubMed] [Google Scholar]
  44. Udenfriend S., Kodukula K. How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu Rev Biochem. 1995;64:563–591. doi: 10.1146/annurev.bi.64.070195.003023. [DOI] [PubMed] [Google Scholar]
  45. Werbovetz K. A., Englund P. T. Glycosyl phosphatidylinositol myristoylation in African trypanosomes. Mol Biochem Parasitol. 1997 Mar;85(1):1–7. doi: 10.1016/s0166-6851(96)02820-4. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES