Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Nov 17;16(22):6694–6701. doi: 10.1093/emboj/16.22.6694

The C-propeptide domain of procollagen can be replaced with a transmembrane domain without affecting trimer formation or collagen triple helix folding during biosynthesis.

N J Bulleid 1, J A Dalley 1, J F Lees 1
PMCID: PMC1170274  PMID: 9362484

Abstract

The folding and assembly of procollagen occurs within the cell through a series of discrete steps leading to the formation of a stable trimer consisting of three distinct domains: the N-propeptide, the C-propeptide and the collagen triple helix flanked at either end by short telopeptides. We have established a semi-permeabilized cell system which allows us to study the initial stages in the folding and assembly of procollagen as they would occur in the intact cell. By studying the folding and assembly of the C-propeptide domain in isolation, and a procollagen molecule which lacks the C-propeptide, we have shown that this domain directs the initial association event and is required to allow triple helix formation. However, the essential function of this domain does not include triple helix nucleation or alignment, since this can occur when the C-propeptide is substituted with a single transmembrane domain. Also the telopeptide region is not involved in triple helix nucleation; however, a minimum of two hydroxyproline-containing Gly-X-Y triplets at the C-terminal end of the triple helix are required for nucleation to occur. Thus, the C-propeptide is required solely to ensure association of the monomeric chains; once these are brought together, the triple helix is able to nucleate and fold to form a correctly aligned triple helix.

Full Text

The Full Text of this article is available as a PDF (305.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg R. A., Prockop D. J. The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem Biophys Res Commun. 1973 May 1;52(1):115–120. doi: 10.1016/0006-291x(73)90961-3. [DOI] [PubMed] [Google Scholar]
  2. Bruckner P., Bächinger H. P., Timpl R., Engel J. Three conformationally distinct domains in the amino-terminal segment of type III procollagen and its rapid triple helix leads to and comes from coil transition. Eur J Biochem. 1978 Oct 16;90(3):595–603. doi: 10.1111/j.1432-1033.1978.tb12640.x. [DOI] [PubMed] [Google Scholar]
  3. Bruckner P., Prockop D. J. Proteolytic enzymes as probes for the triple-helical conformation of procollagen. Anal Biochem. 1981 Jan 15;110(2):360–368. doi: 10.1016/0003-2697(81)90204-9. [DOI] [PubMed] [Google Scholar]
  4. Bulleid N. J., Wilson R., Lees J. F. Type-III procollagen assembly in semi-intact cells: chain association, nucleation and triple-helix folding do not require formation of inter-chain disulphide bonds but triple-helix nucleation does require hydroxylation. Biochem J. 1996 Jul 1;317(Pt 1):195–202. doi: 10.1042/bj3170195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bächinger H. P., Bruckner P., Timpl R., Prockop D. J., Engel J. Folding mechanism of the triple helix in type-III collagen and type-III pN-collagen. Role of disulfide bridges and peptide bond isomerization. Eur J Biochem. 1980 May;106(2):619–632. doi: 10.1111/j.1432-1033.1980.tb04610.x. [DOI] [PubMed] [Google Scholar]
  6. Bächinger H. P., Fessler L. I., Timpl R., Fessler J. H. Chain assembly intermediate in the biosynthesis of type III procollagen in chick embryo blood vessels. J Biol Chem. 1981 Dec 25;256(24):13193–13199. [PubMed] [Google Scholar]
  7. Chessler S. D., Byers P. H. Defective folding and stable association with protein disulfide isomerase/prolyl hydroxylase of type I procollagen with a deletion in the pro alpha 2(I) chain that preserves the Gly-X-Y repeat pattern. J Biol Chem. 1992 Apr 15;267(11):7751–7757. [PubMed] [Google Scholar]
  8. Dion A. S., Myers J. C. COOH-terminal propeptides of the major human procollagens. Structural, functional and genetic comparisons. J Mol Biol. 1987 Jan 5;193(1):127–143. doi: 10.1016/0022-2836(87)90632-2. [DOI] [PubMed] [Google Scholar]
  9. Doege K. J., Fessler J. H. Folding of carboxyl domain and assembly of procollagen I. J Biol Chem. 1986 Jul 5;261(19):8924–8935. [PubMed] [Google Scholar]
  10. Dottavio-Martin D., Ravel J. M. Radiolabeling of proteins by reductive alkylation with [14C]formaldehyde and sodium cyanoborohydride. Anal Biochem. 1978 Jul 1;87(2):562–565. doi: 10.1016/0003-2697(78)90706-6. [DOI] [PubMed] [Google Scholar]
  11. Engel J., Prockop D. J. The zipper-like folding of collagen triple helices and the effects of mutations that disrupt the zipper. Annu Rev Biophys Biophys Chem. 1991;20:137–152. doi: 10.1146/annurev.bb.20.060191.001033. [DOI] [PubMed] [Google Scholar]
  12. Fessler L. I., Timpl R., Fessler J. H. Assembly and processing of procollagen type III in chick embryo blood vessels. J Biol Chem. 1981 Mar 10;256(5):2531–2537. [PubMed] [Google Scholar]
  13. Gurevich V. V., Pokrovskaya I. D., Obukhova T. A., Zozulya S. A. Preparative in vitro mRNA synthesis using SP6 and T7 RNA polymerases. Anal Biochem. 1991 Jun;195(2):207–213. doi: 10.1016/0003-2697(91)90318-n. [DOI] [PubMed] [Google Scholar]
  14. Lees J. F., Bulleid N. J. The role of cysteine residues in the folding and association of the COOH-terminal propeptide of types I and III procollagen. J Biol Chem. 1994 Sep 30;269(39):24354–24360. [PubMed] [Google Scholar]
  15. Lees J. F., Tasab M., Bulleid N. J. Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J. 1997 Mar 3;16(5):908–916. doi: 10.1093/emboj/16.5.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mazzorana M., Giry-Lozinguez C., van der Rest M. Trimeric assembly of collagen XII: effect of deletion of the C-terminal part of the molecule. Matrix Biol. 1995 Jul;14(7):583–588. doi: 10.1016/s0945-053x(05)80007-1. [DOI] [PubMed] [Google Scholar]
  17. Mazzorana M., Gruffat H., Sergeant A., van der Rest M. Mechanisms of collagen trimer formation. Construction and expression of a recombinant minigene in HeLa cells reveals a direct effect of prolyl hydroxylation on chain assembly of type XII collagen. J Biol Chem. 1993 Feb 15;268(5):3029–3032. [PubMed] [Google Scholar]
  18. Mazzorana M., Snellman A., Kivirikko K. I., van der Rest M., Pihlajaniemi T. Involvement of prolyl 4-hydroxylase in the assembly of trimeric minicollagen XII. Study in a baculovirus expression system. J Biol Chem. 1996 Nov 15;271(46):29003–29008. doi: 10.1074/jbc.271.46.29003. [DOI] [PubMed] [Google Scholar]
  19. Nakai A., Satoh M., Hirayoshi K., Nagata K. Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum. J Cell Biol. 1992 May;117(4):903–914. doi: 10.1083/jcb.117.4.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Olsen B. R., Hoffmann H., Prockop D. J. Interchain disulfide bonds at the COOH-terminal end of procollagen synthesized by matrix-free cells from chick embryonic tendon and cartilage. Arch Biochem Biophys. 1976 Jul;175(1):341–350. doi: 10.1016/0003-9861(76)90516-6. [DOI] [PubMed] [Google Scholar]
  21. Schofield J. D., Uitto J., Prockop D. J. Formation of interchain disulfide bonds and helical structure during biosynthesis of procollagen by embryonic tendon cells. Biochemistry. 1974 Apr 23;13(9):1801–1806. doi: 10.1021/bi00706a004. [DOI] [PubMed] [Google Scholar]
  22. Singh I., Doms R. W., Wagner K. R., Helenius A. Intracellular transport of soluble and membrane-bound glycoproteins: folding, assembly and secretion of anchor-free influenza hemagglutinin. EMBO J. 1990 Mar;9(3):631–639. doi: 10.1002/j.1460-2075.1990.tb08155.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tatu U., Hammond C., Helenius A. Folding and oligomerization of influenza hemagglutinin in the ER and the intermediate compartment. EMBO J. 1995 Apr 3;14(7):1340–1348. doi: 10.1002/j.1460-2075.1995.tb07120.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilson R., Allen A. J., Oliver J., Brookman J. L., High S., Bulleid N. J. The translocation, folding, assembly and redox-dependent degradation of secretory and membrane proteins in semi-permeabilized mammalian cells. Biochem J. 1995 May 1;307(Pt 3):679–687. doi: 10.1042/bj3070679. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES