Abstract
The product of the chloroplast ycf10 gene has been localized in the inner chloroplast envelope membrane (Sasaki et al., 1993) and found to display sequence homology with the cyanobacterial CotA product which is altered in mutants defective in CO2 transport and proton extrusion (Katoh et al., 1996a,b). In Chlamydomonas reinhardtii, ycf10, located between the psbI and atpH genes, encodes a putative hydrophobic protein of 500 residues, which is considerably larger than its higher plant homologue because of a long insertion that separates the conserved N and C termini. Using biolistic transformation, we have disrupted ycf10 with the chloroplast aadA expression cassette and examined the phenotype of the homoplasmic transformants. These were found to grow both photoheterotrophically and photoautotrophically under low light, thereby revealing that the Ycf10 product is not essential for the photosynthetic reactions. However, under high light these transformants did not grow photoautotrophically and barely photoheterotrophically. The increased light sensitivity of the transformants appears to result from a limitation in photochemical energy utilization and/or dissipation which correlates with a greatly diminished photosynthetic response to exogenous (CO2 + HCO3-), especially under conditions where the chloroplast inorganic carbon transport system is not induced. Mass spectrometric measurements with either whole cells or isolated chloroplasts from the transformants revealed that the CO2 and HCO3- uptake systems have a reduced affinity for their substrates. The results suggest the existence of a ycf10-dependent system within the plastid envelope which promotes efficient inorganic carbon (Ci) uptake into chloroplasts.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Badger M. R., Kaplan A., Berry J. A. Internal Inorganic Carbon Pool of Chlamydomonas reinhardtii: EVIDENCE FOR A CARBON DIOXIDE-CONCENTRATING MECHANISM. Plant Physiol. 1980 Sep;66(3):407–413. doi: 10.1104/pp.66.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonham-Smith P. C., Bourque D. P. Translation of chloroplast-encoded mRNA: potential initiation and termination signals. Nucleic Acids Res. 1989 Mar 11;17(5):2057–2080. doi: 10.1093/nar/17.5.2057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boudreau E., Otis C., Turmel M. Conserved gene clusters in the highly rearranged chloroplast genomes of Chlamydomonas moewusii and Chlamydomonas reinhardtii. Plant Mol Biol. 1994 Feb;24(4):585–602. doi: 10.1007/BF00023556. [DOI] [PubMed] [Google Scholar]
- Chen Z. X., Chastain C. J., Al-Abed S. R., Chollet R., Spreitzer R. J. Reduced CO2/O2 specificity of ribulose-bisphosphate carboxylase/oxygenase in a temperature-sensitive chloroplast mutant of Chlamydomonas. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4696–4699. doi: 10.1073/pnas.85.13.4696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clemetson J. M., Boschetti A., Clemetson K. J. Chloroplast envelope proteins are encoded by the chloroplast genome of Chlamydomonas reinhardtii. J Biol Chem. 1992 Oct 5;267(28):19773–19779. [PubMed] [Google Scholar]
- Eriksson M., Karlsson J., Ramazanov Z., Gardeström P., Samuelsson G. Discovery of an algal mitochondrial carbonic anhydrase: molecular cloning and characterization of a low-CO2-induced polypeptide in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):12031–12034. doi: 10.1073/pnas.93.21.12031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fong S. E., Surzycki S. J. Chloroplast RNA polymerase genes of Chlamydomonas reinhardtii exhibit an unusual structure and arrangement. Curr Genet. 1992 May;21(6):485–497. doi: 10.1007/BF00351659. [DOI] [PubMed] [Google Scholar]
- Goldschmidt-Clermont M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of chlamydomonas. Nucleic Acids Res. 1991 Aug 11;19(15):4083–4089. doi: 10.1093/nar/19.15.4083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorman D. S., Levine R. P. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1665–1669. doi: 10.1073/pnas.54.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hallick R. B., Hong L., Drager R. G., Favreau M. R., Monfort A., Orsat B., Spielmann A., Stutz E. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res. 1993 Jul 25;21(15):3537–3544. doi: 10.1093/nar/21.15.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C. R., Meng B. Y. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989 Jun;217(2-3):185–194. doi: 10.1007/BF02464880. [DOI] [PubMed] [Google Scholar]
- Huang C., Wang S., Chen L., Lemieux C., Otis C., Turmel M., Liu X. Q. The Chlamydomonas chloroplast clpP gene contains translated large insertion sequences and is essential for cell growth. Mol Gen Genet. 1994 Jul 25;244(2):151–159. doi: 10.1007/BF00283516. [DOI] [PubMed] [Google Scholar]
- Husic H. D., Kitayama M., Togasaki R. K., Moroney J. V., Morris K. L., Tolbert N. E. Identification of Intracellular Carbonic Anhydrase in Chlamydomonas reinhardtii which Is Distinct from the Periplasmic Form of the Enzyme. Plant Physiol. 1989 Mar;89(3):904–909. doi: 10.1104/pp.89.3.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husic H. D., Marcus C. A. Identification of Intracellular Carbonic Anhydrase in Chlamydomonas reinhardtii with a Carbonic Anhydrase-Directed Photoaffinity Label. Plant Physiol. 1994 May;105(1):133–139. doi: 10.1104/pp.105.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jäger-Vottero P., Dorne A. J., Jordanov J., Douce R., Joyard J. Redox chains in chloroplast envelope membranes: spectroscopic evidence for the presence of electron carriers, including iron-sulfur centers. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1597–1602. doi: 10.1073/pnas.94.4.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katoh A., Lee K. S., Fukuzawa H., Ohyama K., Ogawa T. cemA homologue essential to CO2 transport in the cyanobacterium Synechocystis PCC6803. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4006–4010. doi: 10.1073/pnas.93.9.4006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katoh A., Sonoda M., Katoh H., Ogawa T. Absence of light-induced proton extrusion in a cotA-less mutant of Synechocystis sp. strain PCC6803. J Bacteriol. 1996 Sep;178(18):5452–5455. doi: 10.1128/jb.178.18.5452-5455.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krinsky N. I., Levine R. P. Carotenoids of Wild Type and Mutant Strains of the Green Aiga, Chlamydomonas reinhardi. Plant Physiol. 1964 Jul;39(4):680–687. doi: 10.1104/pp.39.4.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Künstner P., Guardiola A., Takahashi Y., Rochaix J. D. A mutant strain of Chlamydomonas reinhardtii lacking the chloroplast photosystem II psbI gene grows photoautotrophically. J Biol Chem. 1995 Apr 21;270(16):9651–9654. doi: 10.1074/jbc.270.16.9651. [DOI] [PubMed] [Google Scholar]
- Maier R. M., Neckermann K., Igloi G. L., Kössel H. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol. 1995 Sep 1;251(5):614–628. doi: 10.1006/jmbi.1995.0460. [DOI] [PubMed] [Google Scholar]
- Monod C., Takahashi Y., Goldschmidt-Clermont M., Rochaix J. D. The chloroplast ycf8 open reading frame encodes a photosystem II polypeptide which maintains photosynthetic activity under adverse growth conditions. EMBO J. 1994 Jun 15;13(12):2747–2754. doi: 10.1002/j.1460-2075.1994.tb06568.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moroney J. V., Husic H. D., Tolbert N. E. Effect of Carbonic Anhydrase Inhibitors on Inorganic Carbon Accumulation by Chlamydomonas reinhardtii. Plant Physiol. 1985 Sep;79(1):177–183. doi: 10.1104/pp.79.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moroney J. V., Kitayama M., Togasaki R. K., Tolbert N. E. Evidence for Inorganic Carbon Transport by Intact Chloroplasts of Chlamydomonas reinhardtii. Plant Physiol. 1987 Mar;83(3):460–463. doi: 10.1104/pp.83.3.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moroney J. V., Kitayama M., Togasaki R. K., Tolbert N. E. Evidence for Inorganic Carbon Transport by Intact Chloroplasts of Chlamydomonas reinhardtii. Plant Physiol. 1987 Mar;83(3):460–463. doi: 10.1104/pp.83.3.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagano Y., Matsuno R., Sasaki Y. Sequence and transcriptional analysis of the gene cluster trnQ-zfpA-psaI-ORF231-petA in pea chloroplasts. Curr Genet. 1991 Nov;20(5):431–436. doi: 10.1007/BF00317074. [DOI] [PubMed] [Google Scholar]
- Nickelsen J., van Dillewijn J., Rahire M., Rochaix J. D. Determinants for stability of the chloroplast psbD RNA are located within its short leader region in Chlamydomonas reinhardtii. EMBO J. 1994 Jul 1;13(13):3182–3191. doi: 10.1002/j.1460-2075.1994.tb06617.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Persson B., Argos P. Prediction of transmembrane segments in proteins utilising multiple sequence alignments. J Mol Biol. 1994 Mar 25;237(2):182–192. doi: 10.1006/jmbi.1994.1220. [DOI] [PubMed] [Google Scholar]
- Rost B., Casadio R., Fariselli P., Sander C. Transmembrane helices predicted at 95% accuracy. Protein Sci. 1995 Mar;4(3):521–533. doi: 10.1002/pro.5560040318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki Y., Sekiguchi K., Nagano Y., Matsuno R. Chloroplast envelope protein encoded by chloroplast genome. FEBS Lett. 1993 Jan 18;316(1):93–98. doi: 10.1016/0014-5793(93)81743-j. [DOI] [PubMed] [Google Scholar]
- Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. doi: 10.1002/j.1460-2075.1986.tb04464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spalding M. H., Spreitzer R. J., Ogren W. L. Carbonic Anhydrase-Deficient Mutant of Chlamydomonas reinhardii Requires Elevated Carbon Dioxide Concentration for Photoautotrophic Growth. Plant Physiol. 1983 Oct;73(2):268–272. doi: 10.1104/pp.73.2.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spalding M. H., Spreitzer R. J., Ogren W. L. Reduced Inorganic Carbon Transport in a CO(2)-Requiring Mutant of Chlamydomonas reinhardii. Plant Physiol. 1983 Oct;73(2):273–276. doi: 10.1104/pp.73.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spreitzer R. J., Mets L. Photosynthesis-deficient Mutants of Chlamydomonas reinhardii with Associated Light-sensitive Phenotypes. Plant Physiol. 1981 Mar;67(3):565–569. doi: 10.1104/pp.67.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spreitzer R. J., Ogren W. L. Nuclear Suppressors of the Photosensitivity Associated with Defective Photosynthesis in Chlamydomonas reinhardii. Plant Physiol. 1983 Jan;71(1):35–39. doi: 10.1104/pp.71.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spreitzer R. J., Ogren W. L. Rapid recovery of chloroplast mutations affecting ribulosebisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6293–6297. doi: 10.1073/pnas.80.20.6293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weeks D. P., Beerman N., Griffith O. M. A small-scale five-hour procedure for isolating multiple samples of CsCl-purified DNA: application to isolations from mammalian, insect, higher plant, algal, yeast, and bacterial sources. Anal Biochem. 1986 Feb 1;152(2):376–385. doi: 10.1016/0003-2697(86)90423-9. [DOI] [PubMed] [Google Scholar]
- Willey D. L., Gray J. C. An open reading frame encoding a putative haem-binding polypeptide is cotranscribed with the pea chloroplast gene for apocytochrome f. Plant Mol Biol. 1990 Aug;15(2):347–356. doi: 10.1007/BF00036920. [DOI] [PubMed] [Google Scholar]
- Williams T. G., Turpin D. H. The Role of External Carbonic Anhydrase in Inorganic Carbon Acquisition by Chlamydomonas reinhardii at Alkaline pH. Plant Physiol. 1987 Jan;83(1):92–96. doi: 10.1104/pp.83.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokota A., Harada A., Kitaoka S. Characterization of ribulose 1,5-bisphosphate carboxylase/oxygenase from Euglena gracilis Z. J Biochem. 1989 Mar;105(3):400–405. doi: 10.1093/oxfordjournals.jbchem.a122676. [DOI] [PubMed] [Google Scholar]
