Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Nov 17;16(22):6835–6848. doi: 10.1093/emboj/16.22.6835

Group II intron endonucleases use both RNA and protein subunits for recognition of specific sequences in double-stranded DNA.

H Guo 1, S Zimmerly 1, P S Perlman 1, A M Lambowitz 1
PMCID: PMC1170287  PMID: 9362497

Abstract

Group II introns use intron-encoded reverse transcriptase, maturase and DNA endonuclease activities for site-specific insertion into DNA. Remarkably, the endonucleases are ribonucleoprotein complexes in which the excised intron RNA cleaves the sense strand of the recipient DNA by reverse splicing, while the intron-encoded protein cleaves the antisense strand. Here, studies with the yeast group II intron aI2 indicate that both the RNA and protein components of the endonuclease contribute to recognition of an approximately 30 bp DNA target site. Our results lead to a model in which the protein component first recognizes specific nucleotides in the most distal 5' exon region of the DNA target site (E2-21 to -11). Binding of the protein then leads to DNA unwinding, enabling the intron RNA to base pair to a 13 nucleotide DNA sequence (E2-12 to E3+1) for reverse splicing. Antisense-strand cleavage requires additional interactions of the protein with the 3' exon DNA (E3+1 to +10). Our results show how enzymes can use RNA and protein subunits cooperatively to recognize specific sequences in double-stranded DNA.

Full Text

The Full Text of this article is available as a PDF (667.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonitz S. G., Coruzzi G., Thalenfeld B. E., Tzagoloff A., Macino G. Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrme oxidase. J Biol Chem. 1980 Dec 25;255(24):11927–11941. [PubMed] [Google Scholar]
  2. Carignani G., Groudinsky O., Frezza D., Schiavon E., Bergantino E., Slonimski P. P. An mRNA maturase is encoded by the first intron of the mitochondrial gene for the subunit I of cytochrome oxidase in S. cerevisiae. Cell. 1983 Dec;35(3 Pt 2):733–742. doi: 10.1016/0092-8674(83)90106-x. [DOI] [PubMed] [Google Scholar]
  3. Cherniack A. D., Garriga G., Kittle J. D., Jr, Akins R. A., Lambowitz A. M. Function of Neurospora mitochondrial tyrosyl-tRNA synthetase in RNA splicing requires an idiosyncratic domain not found in other synthetases. Cell. 1990 Aug 24;62(4):745–755. doi: 10.1016/0092-8674(90)90119-y. [DOI] [PubMed] [Google Scholar]
  4. Curcio M. J., Belfort M. Retrohoming: cDNA-mediated mobility of group II introns requires a catalytic RNA. Cell. 1996 Jan 12;84(1):9–12. doi: 10.1016/s0092-8674(00)80987-3. [DOI] [PubMed] [Google Scholar]
  5. Demidov V., Frank-Kamenetskii M. D., Egholm M., Buchardt O., Nielsen P. E. Sequence selective double strand DNA cleavage by peptide nucleic acid (PNA) targeting using nuclease S1. Nucleic Acids Res. 1993 May 11;21(9):2103–2107. doi: 10.1093/nar/21.9.2103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eskes R., Yang J., Lambowitz A. M., Perlman P. S. Mobility of yeast mitochondrial group II introns: engineering a new site specificity and retrohoming via full reverse splicing. Cell. 1997 Mar 21;88(6):865–874. doi: 10.1016/s0092-8674(00)81932-7. [DOI] [PubMed] [Google Scholar]
  7. Feng Q., Moran J. V., Kazazian H. H., Jr, Boeke J. D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. 1996 Nov 29;87(5):905–916. doi: 10.1016/s0092-8674(00)81997-2. [DOI] [PubMed] [Google Scholar]
  8. Frank-Kamenetskii M. D., Mirkin S. M. Triplex DNA structures. Annu Rev Biochem. 1995;64:65–95. doi: 10.1146/annurev.bi.64.070195.000433. [DOI] [PubMed] [Google Scholar]
  9. Greider C. W., Blackburn E. H. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell. 1987 Dec 24;51(6):887–898. doi: 10.1016/0092-8674(87)90576-9. [DOI] [PubMed] [Google Scholar]
  10. Griffin E. A., Jr, Qin Z., Michels W. J., Jr, Pyle A. M. Group II intron ribozymes that cleave DNA and RNA linkages with similar efficiency, and lack contacts with substrate 2'-hydroxyl groups. Chem Biol. 1995 Nov;2(11):761–770. doi: 10.1016/1074-5521(95)90104-3. [DOI] [PubMed] [Google Scholar]
  11. Hebbar S. K., Belcher S. M., Perlman P. S. A maturase-encoding group IIA intron of yeast mitochondria self-splices in vitro. Nucleic Acids Res. 1992 Apr 11;20(7):1747–1754. doi: 10.1093/nar/20.7.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kennell J. C., Moran J. V., Perlman P. S., Butow R. A., Lambowitz A. M. Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria. Cell. 1993 Apr 9;73(1):133–146. doi: 10.1016/0092-8674(93)90166-n. [DOI] [PubMed] [Google Scholar]
  13. Lambowitz A. M., Belfort M. Introns as mobile genetic elements. Annu Rev Biochem. 1993;62:587–622. doi: 10.1146/annurev.bi.62.070193.003103. [DOI] [PubMed] [Google Scholar]
  14. Lazowska J., Meunier B., Macadre C. Homing of a group II intron in yeast mitochondrial DNA is accompanied by unidirectional co-conversion of upstream-located markers. EMBO J. 1994 Oct 17;13(20):4963–4972. doi: 10.1002/j.1460-2075.1994.tb06823.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Luan D. D., Korman M. H., Jakubczak J. L., Eickbush T. H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993 Feb 26;72(4):595–605. doi: 10.1016/0092-8674(93)90078-5. [DOI] [PubMed] [Google Scholar]
  16. Michel F., Ferat J. L. Structure and activities of group II introns. Annu Rev Biochem. 1995;64:435–461. doi: 10.1146/annurev.bi.64.070195.002251. [DOI] [PubMed] [Google Scholar]
  17. Moran J. V., Mecklenburg K. L., Sass P., Belcher S. M., Mahnke D., Lewin A., Perlman P. Splicing defective mutants of the COXI gene of yeast mitochondrial DNA: initial definition of the maturase domain of the group II intron aI2. Nucleic Acids Res. 1994 Jun 11;22(11):2057–2064. doi: 10.1093/nar/22.11.2057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moran J. V., Zimmerly S., Eskes R., Kennell J. C., Lambowitz A. M., Butow R. A., Perlman P. S. Mobile group II introns of yeast mitochondrial DNA are novel site-specific retroelements. Mol Cell Biol. 1995 May;15(5):2828–2838. doi: 10.1128/mcb.15.5.2828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mueller M. W., Allmaier M., Eskes R., Schweyen R. J. Transposition of group II intron aI1 in yeast and invasion of mitochondrial genes at new locations. Nature. 1993 Nov 11;366(6451):174–176. doi: 10.1038/366174a0. [DOI] [PubMed] [Google Scholar]
  20. Norton J. C., Waggenspack J. H., Varnum E., Corey D. R. Targeting peptide nucleic acid-protein conjugates to structural features within duplex DNA. Bioorg Med Chem. 1995 Apr;3(4):437–445. doi: 10.1016/0968-0896(95)00033-d. [DOI] [PubMed] [Google Scholar]
  21. Schmidt W. M., Schweyen R. J., Wolf K., Mueller M. W. Transposable group II introns in fission and budding yeast. Site-specific genomic instabilities and formation of group II IVS plDNAs. J Mol Biol. 1994 Oct 21;243(2):157–166. doi: 10.1006/jmbi.1994.1642. [DOI] [PubMed] [Google Scholar]
  22. Shi Y., Berg J. M. DNA unwinding induced by zinc finger protein binding. Biochemistry. 1996 Mar 26;35(12):3845–3848. doi: 10.1021/bi952384p. [DOI] [PubMed] [Google Scholar]
  23. Weiss A., Keshet I., Razin A., Cedar H. DNA demethylation in vitro: involvement of RNA. Cell. 1996 Sep 6;86(5):709–718. doi: 10.1016/s0092-8674(00)80146-4. [DOI] [PubMed] [Google Scholar]
  24. Yang J., Zimmerly S., Perlman P. S., Lambowitz A. M. Efficient integration of an intron RNA into double-stranded DNA by reverse splicing. Nature. 1996 May 23;381(6580):332–335. doi: 10.1038/381332a0. [DOI] [PubMed] [Google Scholar]
  25. Zimmerly S., Guo H., Eskes R., Yang J., Perlman P. S., Lambowitz A. M. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell. 1995 Nov 17;83(4):529–538. doi: 10.1016/0092-8674(95)90092-6. [DOI] [PubMed] [Google Scholar]
  26. Zimmerly S., Guo H., Perlman P. S., Lambowitz A. M. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell. 1995 Aug 25;82(4):545–554. doi: 10.1016/0092-8674(95)90027-6. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES