Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Dec 1;16(23):6906–6913. doi: 10.1093/emboj/16.23.6906

The three-dimensional structure of human procarboxypeptidase A2. Deciphering the basis of the inhibition, activation and intrinsic activity of the zymogen.

I García-Sáez 1, D Reverter 1, J Vendrell 1, F X Avilés 1, M Coll 1
PMCID: PMC1170294  PMID: 9384570

Abstract

The three-dimensional structure of human procarboxypeptidase A2 has been determined using X-ray crystallography at 1.8 A resolution. This is the first detailed structural report of a human pancreatic carboxypeptidase and of its zymogen. Human procarboxypeptidase A2 is formed by a pro-segment of 96 residues, which inhibits the enzyme, and a carboxypeptidase moiety of 305 residues. The pro-enzyme maintains the general fold when compared with other non-human counterparts. The globular part of the pro-segment docks into the enzyme moiety and shields the S2-S4 substrate binding sites, promoting inhibition. Interestingly, important differences are found in the pro-segment which allow the identification of the structural determinants of the diverse activation behaviours of procarboxypeptidases A1, B and A2, particularly of the latter. The benzylsuccinic inhibitor is able to diffuse into the active site of procarboxypeptidase A2 in the crystals. The structure of the zymogen-inhibitor complex has been solved at 2.2 A resolution. The inhibitor enters the active site through a channel formed at the interface between the pro-segment and the enzyme regions and interacts with important elements of the active site. The derived structural features explain the intrinsic activity of A1/A2 pro-enzymes for small substrates.

Full Text

The Full Text of this article is available as a PDF (433.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avilés F. X., Vendrell J., Guasch A., Coll M., Huber R. Advances in metallo-procarboxypeptidases. Emerging details on the inhibition mechanism and on the activation process. Eur J Biochem. 1993 Feb 1;211(3):381–389. doi: 10.1111/j.1432-1033.1993.tb17561.x. [DOI] [PubMed] [Google Scholar]
  2. Burgos F. J., Salvà M., Villegas V., Soriano F., Mendez E., Avilés F. X. Analysis of the activation process of porcine procarboxypeptidase B and determination of the sequence of its activation segment. Biochemistry. 1991 Apr 23;30(16):4082–4089. doi: 10.1021/bi00230a038. [DOI] [PubMed] [Google Scholar]
  3. Byers L. D., Wolfenden R. A potent reversible inhibitor of carboxypeptidase A. J Biol Chem. 1972 Jan 25;247(2):606–608. [PubMed] [Google Scholar]
  4. Catasús L., Vendrell J., Avilés F. X., Carreira S., Puigserver A., Billeter M. The sequence and conformation of human pancreatic procarboxypeptidase A2. cDNA cloning, sequence analysis, and three-dimensional model. J Biol Chem. 1995 Mar 24;270(12):6651–6657. doi: 10.1074/jbc.270.12.6651. [DOI] [PubMed] [Google Scholar]
  5. Coll M., Guasch A., Avilés F. X., Huber R. Three-dimensional structure of porcine procarboxypeptidase B: a structural basis of its inactivity. EMBO J. 1991 Jan;10(1):1–9. doi: 10.1002/j.1460-2075.1991.tb07914.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Faming Z., Kobe B., Stewart C. B., Rutter W. J., Goldsmith E. J. Structural evolution of an enzyme specificity. The structure of rat carboxypeptidase A2 at 1.9-A resolution. J Biol Chem. 1991 Dec 25;266(36):24606–24612. [PubMed] [Google Scholar]
  7. Gardell S. J., Craik C. S., Clauser E., Goldsmith E. J., Stewart C. B., Graf M., Rutter W. J. A novel rat carboxypeptidase, CPA2: characterization, molecular cloning, and evolutionary implications on substrate specificity in the carboxypeptidase gene family. J Biol Chem. 1988 Nov 25;263(33):17828–17836. [PubMed] [Google Scholar]
  8. Gomis-Rüth F. X., Gómez M., Bode W., Huber R., Avilés F. X. The three-dimensional structure of the native ternary complex of bovine pancreatic procarboxypeptidase A with proproteinase E and chymotrypsinogen C. EMBO J. 1995 Sep 15;14(18):4387–4394. doi: 10.1002/j.1460-2075.1995.tb00117.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guasch A., Coll M., Avilés F. X., Huber R. Three-dimensional structure of porcine pancreatic procarboxypeptidase A. A comparison of the A and B zymogens and their determinants for inhibition and activation. J Mol Biol. 1992 Mar 5;224(1):141–157. doi: 10.1016/0022-2836(92)90581-4. [DOI] [PubMed] [Google Scholar]
  10. Huennekens F. M. Tumor targeting: activation of prodrugs by enzyme-monoclonal antibody conjugates. Trends Biotechnol. 1994 Jun;12(6):234–239. doi: 10.1016/0167-7799(94)90122-8. [DOI] [PubMed] [Google Scholar]
  11. Kim H., Lipscomb W. N. Comparison of the structures of three carboxypeptidase A-phosphonate complexes determined by X-ray crystallography. Biochemistry. 1991 Aug 20;30(33):8171–8180. doi: 10.1021/bi00247a012. [DOI] [PubMed] [Google Scholar]
  12. Laethem R. M., Blumenkopf T. A., Cory M., Elwell L., Moxham C. P., Ray P. H., Walton L. M., Smith G. K. Expression and characterization of human pancreatic preprocarboxypeptidase A1 and preprocarboxypeptidase A2. Arch Biochem Biophys. 1996 Aug 1;332(1):8–18. doi: 10.1006/abbi.1996.0310. [DOI] [PubMed] [Google Scholar]
  13. Mangani S., Carloni P., Orioli P. Crystal structure of the complex between carboxypeptidase A and the biproduct analog inhibitor L-benzylsuccinate at 2.0 A resolution. J Mol Biol. 1992 Jan 20;223(2):573–578. doi: 10.1016/0022-2836(92)90671-6. [DOI] [PubMed] [Google Scholar]
  14. Oppezzo O., Ventura S., Bergman T., Vendrell J., Jörnvall H., Avilés F. X. Procarboxypeptidase in rat pancreas. Overall characterization and comparison of the activation processes. Eur J Biochem. 1994 May 15;222(1):55–63. doi: 10.1111/j.1432-1033.1994.tb18841.x. [DOI] [PubMed] [Google Scholar]
  15. Pascual R., Burgos F. J., Salva M., Soriano F., Mendez E., Aviles F. X. Purification and properties of five different forms of human procarboxypeptidases. Eur J Biochem. 1989 Feb 15;179(3):609–616. doi: 10.1111/j.1432-1033.1989.tb14590.x. [DOI] [PubMed] [Google Scholar]
  16. Rees D. C., Lewis M., Lipscomb W. N. Refined crystal structure of carboxypeptidase A at 1.54 A resolution. J Mol Biol. 1983 Aug 5;168(2):367–387. doi: 10.1016/s0022-2836(83)80024-2. [DOI] [PubMed] [Google Scholar]
  17. Rees D. C., Lipscomb W. N. Refined crystal structure of the potato inhibitor complex of carboxypeptidase A at 2.5 A resolution. J Mol Biol. 1982 Sep 25;160(3):475–498. doi: 10.1016/0022-2836(82)90309-6. [DOI] [PubMed] [Google Scholar]
  18. Shoham G., Christianson D. W., Oren D. A. Complex between carboxypeptidase A and a hydrated ketomethylene substrate analogue. Proc Natl Acad Sci U S A. 1988 Feb;85(3):684–688. doi: 10.1073/pnas.85.3.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vendrell J., Cuchillo C. M., Avilés F. X. The tryptic activation pathway of monomeric procarboxypeptidase A. J Biol Chem. 1990 Apr 25;265(12):6949–6953. [PubMed] [Google Scholar]
  20. Villegas V., Vendrell J., Avilés X. The activation pathway of procarboxypeptidase B from porcine pancreas: participation of the active enzyme in the proteolytic processing. Protein Sci. 1995 Sep;4(9):1792–1800. doi: 10.1002/pro.5560040914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vitols K. S., Haag-Zeino B., Baer T., Montejano Y. D., Huennekens F. M. Methotrexate-alpha-phenylalanine: optimization of methotrexate prodrug for activation by carboxypeptidase A-monoclonal antibody conjugate. Cancer Res. 1995 Feb 1;55(3):478–481. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES