Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Dec 1;16(23):6926–6935. doi: 10.1093/emboj/16.23.6926

Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene.

N D Horseman 1, W Zhao 1, E Montecino-Rodriguez 1, M Tanaka 1, K Nakashima 1, S J Engle 1, F Smith 1, E Markoff 1, K Dorshkind 1
PMCID: PMC1170296  PMID: 9384572

Abstract

Prolactin (PRL) has been implicated in numerous physiological and developmental processes. The mouse PRL gene was disrupted by homologous recombination. The mutation caused infertility in female mice, but did not prevent female mice from manifesting spontaneous maternal behaviors. PRL-deficient males were fertile and produced offspring with normal Mendelian gender and genotype ratios when they were mated with heterozygous females. Mammary glands of mutant female mice developed a normal ductal tree, but the ducts failed to develop lobular decorations, which is a characteristic of the normal virgin adult mammary gland. The potential effect of PRL gene disruption on antigen-independent primary hematopoiesis was assessed. The results of this analysis indicated that myelopoiesis and primary lymphopoiesis were unaltered in the mutant mice. Consistent with these observations in PRL mutant mice, PRL failed to correct the bone marrow B cell deficiency of Snell dwarf mice. These results argue that PRL does not play any indispensable role in primary lymphocyte development and homeostasis, or in myeloid differentiation. The PRL-/- mouse model provides a new research tool with which to resolve a variety of questions regarding the involvement of both endocrine and paracrine sources of PRL in reproduction, lactogenesis, tumorigenesis and immunoregulation.

Full Text

The Full Text of this article is available as a PDF (444.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BATES R. W., MILLER R. A., GARRISON M. M. Evidence in the hypophysectomized pigeon of a synergism among prolactin, growth hormone, thyroxine and prednisone upon weight of the body, digestive tract, kidney and fat stores. Endocrinology. 1962 Sep;71:345–360. doi: 10.1210/endo-71-3-345. [DOI] [PubMed] [Google Scholar]
  2. Bellone G., Geuna M., Carbone A., Silvestri S., Foa R., Emanuelli G., Matera L. Regulatory action of prolactin on the in vitro growth of CD34+ve human hemopoietic progenitor cells. J Cell Physiol. 1995 May;163(2):221–231. doi: 10.1002/jcp.1041630202. [DOI] [PubMed] [Google Scholar]
  3. Ben-Jonathan N., Mershon J. L., Allen D. L., Steinmetz R. W. Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocr Rev. 1996 Dec;17(6):639–669. doi: 10.1210/edrv-17-6-639. [DOI] [PubMed] [Google Scholar]
  4. Bridges R. S., DiBiase R., Loundes D. D., Doherty P. C. Prolactin stimulation of maternal behavior in female rats. Science. 1985 Feb 15;227(4688):782–784. doi: 10.1126/science.3969568. [DOI] [PubMed] [Google Scholar]
  5. Bridges R. S., Numan M., Ronsheim P. M., Mann P. E., Lupini C. E. Central prolactin infusions stimulate maternal behavior in steroid-treated, nulliparous female rats. Proc Natl Acad Sci U S A. 1990 Oct;87(20):8003–8007. doi: 10.1073/pnas.87.20.8003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown J. R., Ye H., Bronson R. T., Dikkes P., Greenberg M. E. A defect in nurturing in mice lacking the immediate early gene fosB. Cell. 1996 Jul 26;86(2):297–309. doi: 10.1016/s0092-8674(00)80101-4. [DOI] [PubMed] [Google Scholar]
  7. Champlin A. K., Dorr D. L., Gates A. H. Determining the stage of the estrous cycle in the mouse by the appearance of the vagina. Biol Reprod. 1973 May;8(4):491–494. doi: 10.1093/biolreprod/8.4.491. [DOI] [PubMed] [Google Scholar]
  8. Dardenne M., Kelly P. A., Bach J. F., Savino W. Identification and functional activity of prolactin receptors in thymic epithelial cells. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9700–9704. doi: 10.1073/pnas.88.21.9700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feldman M., Ruan W., Cunningham B. C., Wells J. A., Kleinberg D. L. Evidence that the growth hormone receptor mediates differentiation and development of the mammary gland. Endocrinology. 1993 Oct;133(4):1602–1608. doi: 10.1210/endo.133.4.8404600. [DOI] [PubMed] [Google Scholar]
  10. Ferrara N., Clapp C., Weiner R. The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology. 1991 Aug;129(2):896–900. doi: 10.1210/endo-129-2-896. [DOI] [PubMed] [Google Scholar]
  11. Freemark M., Nagano M., Edery M., Kelly P. A. Prolactin receptor gene expression in the fetal rat. J Endocrinol. 1995 Feb;144(2):285–292. doi: 10.1677/joe.0.1440285. [DOI] [PubMed] [Google Scholar]
  12. Gagnerault M. C., Touraine P., Savino W., Kelly P. A., Dardenne M. Expression of prolactin receptors in murine lymphoid cells in normal and autoimmune situations. J Immunol. 1993 Jun 15;150(12):5673–5681. [PubMed] [Google Scholar]
  13. Gala R. R. Prolactin and growth hormone in the regulation of the immune system. Proc Soc Exp Biol Med. 1991 Oct;198(1):513–527. doi: 10.3181/00379727-198-43286b. [DOI] [PubMed] [Google Scholar]
  14. Gouilleux F., Moritz D., Humar M., Moriggl R., Berchtold S., Groner B. Prolactin and interleukin-2 receptors in T lymphocytes signal through a MGF-STAT5-like transcription factor. Endocrinology. 1995 Dec;136(12):5700–5708. doi: 10.1210/endo.136.12.7588326. [DOI] [PubMed] [Google Scholar]
  15. Gout P. W., Beer C. T., Noble R. L. Prolactin-stimulated growth of cell cultures established from malignant Nb rat lymphomas. Cancer Res. 1980 Jul;40(7):2433–2436. [PubMed] [Google Scholar]
  16. Hardy R. R., Carmack C. E., Shinton S. A., Kemp J. D., Hayakawa K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med. 1991 May 1;173(5):1213–1225. doi: 10.1084/jem.173.5.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Horseman N. D., Yu-Lee L. Y. Transcriptional regulation by the helix bundle peptide hormones: growth hormone, prolactin, and hematopoietic cytokines. Endocr Rev. 1994 Oct;15(5):627–649. doi: 10.1210/edrv-15-5-627. [DOI] [PubMed] [Google Scholar]
  18. Kacsóh B. Prolactin-like biological activity in the pituitary glands of the marsupial Monodelphis domestica and of the amphibian Rana pipiens detected by a colorimetric Nb2 lymphoma cell proliferation assay. Proc Soc Exp Biol Med. 1997 Feb;214(2):146–155. doi: 10.3181/00379727-214-44081. [DOI] [PubMed] [Google Scholar]
  19. Kacsóh B., Veress Z., Tóth B. E., Avery L. M., Grosvenor C. E. Bioactive and immunoreactive variants of prolactin in milk and serum of lactating rats and their pups. J Endocrinol. 1993 Aug;138(2):243–257. doi: 10.1677/joe.0.1380243. [DOI] [PubMed] [Google Scholar]
  20. Kelley K. W., Arkins S., Li Y. M. Growth hormone, prolactin, and insulin-like growth factors: new jobs for old players. Brain Behav Immun. 1992 Dec;6(4):317–326. [PubMed] [Google Scholar]
  21. Kelly P. A., Ali S., Rozakis M., Goujon L., Nagano M., Pellegrini I., Gould D., Djiane J., Edery M., Finidori J. The growth hormone/prolactin receptor family. Recent Prog Horm Res. 1993;48:123–164. doi: 10.1016/b978-0-12-571148-7.50009-9. [DOI] [PubMed] [Google Scholar]
  22. Kleinberg D. L. Early mammary development: growth hormone and IGF-1. J Mammary Gland Biol Neoplasia. 1997 Jan;2(1):49–57. doi: 10.1023/a:1026373513521. [DOI] [PubMed] [Google Scholar]
  23. Kooijman R., Hooghe-Peters E. L., Hooghe R. Prolactin, growth hormone, and insulin-like growth factor-I in the immune system. Adv Immunol. 1996;63:377–454. doi: 10.1016/s0065-2776(08)60860-3. [DOI] [PubMed] [Google Scholar]
  24. Li H., Zeitler P. S., Valerius M. T., Small K., Potter S. S. Gsh-1, an orphan Hox gene, is required for normal pituitary development. EMBO J. 1996 Feb 15;15(4):714–724. [PMC free article] [PubMed] [Google Scholar]
  25. Liu X., Robinson G. W., Wagner K. U., Garrett L., Wynshaw-Boris A., Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997 Jan 15;11(2):179–186. doi: 10.1101/gad.11.2.179. [DOI] [PubMed] [Google Scholar]
  26. MacMahon B., Cole P., Brown J. Etiology of human breast cancer: a review. J Natl Cancer Inst. 1973 Jan;50(1):21–42. doi: 10.1093/jnci/50.1.21. [DOI] [PubMed] [Google Scholar]
  27. Montecino-Rodriguez E., Clark R., Johnson A., Collins L., Dorshkind K. Defective B cell development in Snell dwarf (dw/dw) mice can be corrected by thyroxine treatment. J Immunol. 1996 Oct 15;157(8):3334–3340. [PubMed] [Google Scholar]
  28. Murphy W. J., Durum S. K., Anver M. R., Longo D. L. Immunologic and hematologic effects of neuroendocrine hormones. Studies on DW/J dwarf mice. J Immunol. 1992 Jun 15;148(12):3799–3805. [PubMed] [Google Scholar]
  29. Murphy W. J., Durum S. K., Longo D. L. Differential effects of growth hormone and prolactin on murine T cell development and function. J Exp Med. 1993 Jul 1;178(1):231–236. doi: 10.1084/jem.178.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Murphy W. J., Rui H., Longo D. L. Effects of growth hormone and prolactin immune development and function. Life Sci. 1995;57(1):1–14. doi: 10.1016/0024-3205(95)00237-z. [DOI] [PubMed] [Google Scholar]
  31. Nagy E., Berczi I. Pituitary dependence of bone marrow function. Br J Haematol. 1989 Apr;71(4):457–462. doi: 10.1111/j.1365-2141.1989.tb06302.x. [DOI] [PubMed] [Google Scholar]
  32. Nagy E., Berczi I., Wren G. E., Asa S. L., Kovacs K. Immunomodulation by bromocriptine. Immunopharmacology. 1983 Oct;6(3):231–243. doi: 10.1016/0162-3109(83)90023-1. [DOI] [PubMed] [Google Scholar]
  33. Noirot E. Serial order of maternal responses in mice. Anim Behav. 1969 Aug;17(3):547–550. doi: 10.1016/0003-3472(69)90162-6. [DOI] [PubMed] [Google Scholar]
  34. O'Neal K. D., Schwarz L. A., Yu-Lee L. Y. Prolactin receptor gene expression in lymphoid cells. Mol Cell Endocrinol. 1991 Dec;82(2-3):127–135. doi: 10.1016/0303-7207(91)90023-l. [DOI] [PubMed] [Google Scholar]
  35. Ormandy C. J., Camus A., Barra J., Damotte D., Lucas B., Buteau H., Edery M., Brousse N., Babinet C., Binart N. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 1997 Jan 15;11(2):167–178. doi: 10.1101/gad.11.2.167. [DOI] [PubMed] [Google Scholar]
  36. Sabharwal P., Glaser R., Lafuse W., Varma S., Liu Q., Arkins S., Kooijman R., Kutz L., Kelley K. W., Malarkey W. B. Prolactin synthesized and secreted by human peripheral blood mononuclear cells: an autocrine growth factor for lymphoproliferation. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7713–7716. doi: 10.1073/pnas.89.16.7713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shull M. M., Ormsby I., Kier A. B., Pawlowski S., Diebold R. J., Yin M., Allen R., Sidman C., Proetzel G., Calvin D. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992 Oct 22;359(6397):693–699. doi: 10.1038/359693a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Soares M. J., Faria T. N., Roby K. F., Deb S. Pregnancy and the prolactin family of hormones: coordination of anterior pituitary, uterine, and placental expression. Endocr Rev. 1991 Nov;12(4):402–423. doi: 10.1210/edrv-12-4-402. [DOI] [PubMed] [Google Scholar]
  39. Touraine P., Leite de Moraes M. C., Dardenne M., Kelly P. A. Expression of short and long forms of prolactin receptor in murine lymphoid tissues. Mol Cell Endocrinol. 1994 Sep;104(2):183–190. doi: 10.1016/0303-7207(94)90121-x. [DOI] [PubMed] [Google Scholar]
  40. Udy G. B., Towers R. P., Snell R. G., Wilkins R. J., Park S. H., Ram P. A., Waxman D. J., Davey H. W. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7239–7244. doi: 10.1073/pnas.94.14.7239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Villanua M. A., Szary A., Bartke A., Esquifino A. I. Changes in lymphoid organs of Ames dwarf mice after treatment with growth hormone, prolactin or ectopic pituitary transplants. J Endocrinol Invest. 1992 Sep;15(8):587–595. doi: 10.1007/BF03344930. [DOI] [PubMed] [Google Scholar]
  42. Wakao H., Gouilleux F., Groner B. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J. 1994 May 1;13(9):2182–2191. doi: 10.1002/j.1460-2075.1994.tb06495.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Warwick-Davies J., Lowrie D. B., Cole P. J. Growth hormone is a human macrophage activating factor. Priming of human monocytes for enhanced release of H2O2. J Immunol. 1995 Feb 15;154(4):1909–1918. [PubMed] [Google Scholar]
  44. Welsch C. W., Nagasawa H. Prolactin and murine mammary tumorigenesis: a review. Cancer Res. 1977 Apr;37(4):951–963. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES