Abstract
Transport of precursor proteins across the chloroplastic envelope membranes requires the interaction of protein translocons localized in both the outer and inner envelope membranes. Analysis by blue native gel electrophoresis revealed that the translocon of the inner envelope membranes consisted of at least six proteins with molecular weights of 36, 45, 52, 60, 100 and 110 kDa, respectively. Tic110 and ClpC, identified as components of the protein import apparatus of the inner envelope membrane, were prominent constituents of this complex. The amino acid sequence of the 52 kDa protein, deduced from the cDNA, contains a predicted Rieske-type iron-sulfur cluster and a mononuclear iron-binding site. Diethylpyrocarbonate, a Rieske-type protein-modifying reagent, inhibits the translocation of precursor protein across the inner envelope membrane, whereas binding of the precursor to the outer envelope membrane is still possible. In another independent experimental approach, the 52 kDa protein could be co-purified with a trapped precursor protein in association with the chloroplast protein translocon subunits Toc86, Toc75, Toc34 and Tic110. Together, these results strongly suggest that the 52 kDa protein, named Tic55 due to its calculated molecular weight, is a member of the chloroplastic inner envelope protein translocon.
Full Text
The Full Text of this article is available as a PDF (426.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akita M., Nielsen E., Keegstra K. Identification of protein transport complexes in the chloroplastic envelope membranes via chemical cross-linking. J Cell Biol. 1997 Mar 10;136(5):983–994. doi: 10.1083/jcb.136.5.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chua N. H., Schmidt G. W. Transport of proteins into mitochondria and chloroplasts. J Cell Biol. 1979 Jun;81(3):461–483. doi: 10.1083/jcb.81.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Claros M. G., von Heijne G. TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci. 1994 Dec;10(6):685–686. doi: 10.1093/bioinformatics/10.6.685. [DOI] [PubMed] [Google Scholar]
- Dekker P. J., Müller H., Rassow J., Pfanner N. Characterization of the preprotein translocase of the outer mitochondrial membrane by blue native electrophoresis. Biol Chem. 1996 Jul-Aug;377(7-8):535–538. [PubMed] [Google Scholar]
- Douwe de Boer A., Weisbeek P. J. Chloroplast protein topogenesis: import, sorting and assembly. Biochim Biophys Acta. 1991 Nov 13;1071(3):221–253. doi: 10.1016/0304-4157(91)90015-o. [DOI] [PubMed] [Google Scholar]
- Flügge U. I., Hinz G. Energy dependence of protein translocation into chloroplasts. Eur J Biochem. 1986 Nov 3;160(3):563–570. doi: 10.1111/j.1432-1033.1986.tb10075.x. [DOI] [PubMed] [Google Scholar]
- Froehlich J. E., Keegstra K. Identification of a translocation intermediate occupying functional protein import sites in the chloroplastic envelope membrane. J Biol Chem. 1997 Mar 21;272(12):8077–8082. doi: 10.1074/jbc.272.12.8077. [DOI] [PubMed] [Google Scholar]
- Fuks B., Schnell D. J. Mechanism of Protein Transport across the Chloroplast Envelope. Plant Physiol. 1997 Jun;114(2):405–410. doi: 10.1104/pp.114.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray J., Close P. S., Briggs S. P., Johal G. S. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell. 1997 Apr 4;89(1):25–31. doi: 10.1016/s0092-8674(00)80179-8. [DOI] [PubMed] [Google Scholar]
- Hidalgo E., Ding H., Demple B. Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem Sci. 1997 Jun;22(6):207–210. doi: 10.1016/s0968-0004(97)01068-2. [DOI] [PubMed] [Google Scholar]
- Hirsch S., Muckel E., Heemeyer F., von Heijne G., Soll J. A receptor component of the chloroplast protein translocation machinery. Science. 1994 Dec 23;266(5193):1989–1992. doi: 10.1126/science.7801125. [DOI] [PubMed] [Google Scholar]
- Jiang H., Parales R. E., Lynch N. A., Gibson D. T. Site-directed mutagenesis of conserved amino acids in the alpha subunit of toluene dioxygenase: potential mononuclear non-heme iron coordination sites. J Bacteriol. 1996 Jun;178(11):3133–3139. doi: 10.1128/jb.178.11.3133-3139.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jäger-Vottero P., Dorne A. J., Jordanov J., Douce R., Joyard J. Redox chains in chloroplast envelope membranes: spectroscopic evidence for the presence of electron carriers, including iron-sulfur centers. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1597–1602. doi: 10.1073/pnas.94.4.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jänsch L., Kruft V., Schmitz U. K., Braun H. P. New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. Plant J. 1996 Mar;9(3):357–368. doi: 10.1046/j.1365-313x.1996.09030357.x. [DOI] [PubMed] [Google Scholar]
- Kessler F., Blobel G. Interaction of the protein import and folding machineries of the chloroplast. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7684–7689. doi: 10.1073/pnas.93.15.7684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ko K., Budd D., Wu C., Seibert F., Kourtz L., Ko Z. W. Isolation and characterization of a cDNA clone encoding a member of the Com44/Cim44 envelope components of the chloroplast protein import apparatus. J Biol Chem. 1995 Dec 1;270(48):28601–28608. doi: 10.1074/jbc.270.48.28601. [DOI] [PubMed] [Google Scholar]
- Leheny E. A., Theg S. M. Apparent Inhibition of Chloroplast Protein Import by Cold Temperatures Is Due to Energetic Considerations Not Membrane Fluidity. Plant Cell. 1994 Mar;6(3):427–437. doi: 10.1105/tpc.6.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lübeck J., Soll J., Akita M., Nielsen E., Keegstra K. Topology of IEP110, a component of the chloroplastic protein import machinery present in the inner envelope membrane. EMBO J. 1996 Aug 15;15(16):4230–4238. [PMC free article] [PubMed] [Google Scholar]
- Ma Y., Kouranov A., LaSala S. E., Schnell D. J. Two components of the chloroplast protein import apparatus, IAP86 and IAP75, interact with the transit sequence during the recognition and translocation of precursor proteins at the outer envelope. J Cell Biol. 1996 Jul;134(2):315–327. doi: 10.1083/jcb.134.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin J., Mahlke K., Pfanner N. Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences. J Biol Chem. 1991 Sep 25;266(27):18051–18057. [PubMed] [Google Scholar]
- Mason J. R., Cammack R. The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol. 1992;46:277–305. doi: 10.1146/annurev.mi.46.100192.001425. [DOI] [PubMed] [Google Scholar]
- Nielsen E., Akita M., Davila-Aponte J., Keegstra K. Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J. 1997 Mar 3;16(5):935–946. doi: 10.1093/emboj/16.5.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohnishi T., Meinhardt S. W., von Jagow G., Yagi T., Hatefi Y. Effect of ethoxyformic anhydride on the Rieske iron-sulfur protein of bovine heart ubiquinol: cytochrome c oxidoreductase. FEBS Lett. 1994 Oct 10;353(1):103–107. doi: 10.1016/0014-5793(94)01021-8. [DOI] [PubMed] [Google Scholar]
- Perry S. E., Keegstra K. Envelope membrane proteins that interact with chloroplastic precursor proteins. Plant Cell. 1994 Jan;6(1):93–105. doi: 10.1105/tpc.6.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pohlmeyer K., Soll J., Steinkamp T., Hinnah S., Wagner R. Isolation and characterization of an amino acid-selective channel protein present in the chloroplastic outer envelope membrane. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9504–9509. doi: 10.1073/pnas.94.17.9504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rathinasabapathi B., Burnet M., Russell B. L., Gage D. A., Liao P. C., Nye G. J., Scott P., Golbeck J. H., Hanson A. D. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3454–3458. doi: 10.1073/pnas.94.7.3454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothen R., Thiess M., Schumann P., Boschetti A. Import inhibition of poly(His) containing chloroplast precursor proteins by Ni2+ ions. FEBS Lett. 1997 Feb 10;403(1):15–18. doi: 10.1016/s0014-5793(97)00016-1. [DOI] [PubMed] [Google Scholar]
- Schatz G., Dobberstein B. Common principles of protein translocation across membranes. Science. 1996 Mar 15;271(5255):1519–1526. doi: 10.1126/science.271.5255.1519. [DOI] [PubMed] [Google Scholar]
- Schnell D. J., Blobel G. Identification of intermediates in the pathway of protein import into chloroplasts and their localization to envelope contact sites. J Cell Biol. 1993 Jan;120(1):103–115. doi: 10.1083/jcb.120.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnell D. J., Blobel G., Keegstra K., Kessler F., Ko K., Soll J. A consensus nomenclature for the protein-import components of the chloroplast envelope. Trends Cell Biol. 1997 Aug;7(8):303–304. doi: 10.1016/S0962-8924(97)01111-2. [DOI] [PubMed] [Google Scholar]
- Schnell D. J., Kessler F., Blobel G. Isolation of components of the chloroplast protein import machinery. Science. 1994 Nov 11;266(5187):1007–1012. doi: 10.1126/science.7973649. [DOI] [PubMed] [Google Scholar]
- Schägger H., Cramer W. A., von Jagow G. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem. 1994 Mar;217(2):220–230. doi: 10.1006/abio.1994.1112. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Segui-Real B., Kispal G., Lill R., Neupert W. Functional independence of the protein translocation machineries in mitochondrial outer and inner membranes: passage of preproteins through the intermembrane space. EMBO J. 1993 May;12(5):2211–2218. doi: 10.1002/j.1460-2075.1993.tb05869.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tranel P. J., Froehlich J., Goyal A., Keegstra K. A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway. EMBO J. 1995 Jun 1;14(11):2436–2446. doi: 10.1002/j.1460-2075.1995.tb07241.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waegemann K., Soll J. Characterization and isolation of the chloroplast protein import machinery. Methods Cell Biol. 1995;50:255–267. doi: 10.1016/s0091-679x(08)61035-3. [DOI] [PubMed] [Google Scholar]
- Waegemann K., Soll J. Phosphorylation of the transit sequence of chloroplast precursor proteins. J Biol Chem. 1996 Mar 15;271(11):6545–6554. doi: 10.1074/jbc.271.11.6545. [DOI] [PubMed] [Google Scholar]
- Worley K. C., Wiese B. A., Smith R. F. BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results. Genome Res. 1995 Sep;5(2):173–184. doi: 10.1101/gr.5.2.173. [DOI] [PubMed] [Google Scholar]
- Wu C., Seibert F. S., Ko K. Identification of chloroplast envelope proteins in close physical proximity to a partially translocated chimeric precursor protein. J Biol Chem. 1994 Dec 23;269(51):32264–32271. [PubMed] [Google Scholar]