Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The EMBO Journal logoLink to The EMBO Journal
. 1997 Dec 15;16(24):7411–7421. doi: 10.1093/emboj/16.24.7411

XSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos.

M Howell 1, C S Hill 1
PMCID: PMC1170341  PMID: 9405370

Abstract

Transforming growth factor (TGF)-beta family members play a central role in mesoderm induction during early embryogenesis in Xenopus. Although a number of target genes induced as an immediate-early response to activin-like members of the family have been described, little is known about the molecular mechanisms involved. Our systematic analysis of the activin induction of the target gene XFKH1 reveals two regions that mediate activin-responsive transcription: one, in the first intron, is targeted directly by the activin-signalling pathway; the other, in the 5' flanking sequences, responds to activin indirectly, possibly being required for maintenance of gene expression. We demonstrate that a 107 bp region of the XFKH1 first intron acts as an enhancer and confers activin inducibility onto a minimal uninducible promoter in the absence of new protein synthesis. It bears little sequence similarity to other activin responsive sequences. We further demonstrate that overexpression of a constitutively active derivative of Xenopus Smad2 (XSmad2), which has been implicated as a component of the activin signalling pathway, is sufficient for direct activation of transcription via this enhancer. Moreover, we show that XSmad2 acts indirectly on the proximal promoter element induced by activin via an indirect mechanism. These results establish the XFKH1 intron enhancer as a direct nuclear target of the activin signalling pathway in Xenopus embryos, and provide strong new evidence that XSmad2 is a transducer of activin signals.

Full Text

The Full Text of this article is available as a PDF (411.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker J. C., Harland R. M. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev. 1996 Aug 1;10(15):1880–1889. doi: 10.1101/gad.10.15.1880. [DOI] [PubMed] [Google Scholar]
  2. Beddington R. S., Smith J. C. Control of vertebrate gastrulation: inducing signals and responding genes. Curr Opin Genet Dev. 1993 Aug;3(4):655–661. doi: 10.1016/0959-437x(93)90103-v. [DOI] [PubMed] [Google Scholar]
  3. Chen X., Rubock M. J., Whitman M. A transcriptional partner for MAD proteins in TGF-beta signalling. Nature. 1996 Oct 24;383(6602):691–696. doi: 10.1038/383691a0. [DOI] [PubMed] [Google Scholar]
  4. Dalton S., Treisman R. Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell. 1992 Feb 7;68(3):597–612. doi: 10.1016/0092-8674(92)90194-h. [DOI] [PubMed] [Google Scholar]
  5. Dawid I. B. Mesoderm induction and axis determination in Xenopus laevis. Bioessays. 1992 Oct;14(10):687–691. doi: 10.1002/bies.950141009. [DOI] [PubMed] [Google Scholar]
  6. Dirksen M. L., Jamrich M. A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. Genes Dev. 1992 Apr;6(4):599–608. doi: 10.1101/gad.6.4.599. [DOI] [PubMed] [Google Scholar]
  7. Ferguson E. L., Anderson K. V. Decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell. 1992 Oct 30;71(3):451–461. doi: 10.1016/0092-8674(92)90514-d. [DOI] [PubMed] [Google Scholar]
  8. Graff J. M., Bansal A., Melton D. A. Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta superfamily. Cell. 1996 May 17;85(4):479–487. doi: 10.1016/s0092-8674(00)81249-0. [DOI] [PubMed] [Google Scholar]
  9. Green J. B., New H. V., Smith J. C. Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell. 1992 Nov 27;71(5):731–739. doi: 10.1016/0092-8674(92)90550-v. [DOI] [PubMed] [Google Scholar]
  10. Green J. B., Smith J. C. Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature. 1990 Sep 27;347(6291):391–394. doi: 10.1038/347391a0. [DOI] [PubMed] [Google Scholar]
  11. Gurdon J. B., Harger P., Mitchell A., Lemaire P. Activin signalling and response to a morphogen gradient. Nature. 1994 Oct 6;371(6497):487–492. doi: 10.1038/371487a0. [DOI] [PubMed] [Google Scholar]
  12. Hata A., Lo R. S., Wotton D., Lagna G., Massagué J. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature. 1997 Jul 3;388(6637):82–87. doi: 10.1038/40424. [DOI] [PubMed] [Google Scholar]
  13. Hill C. S. Signalling to the nucleus by members of the transforming growth factor-beta (TGF-beta) superfamily. Cell Signal. 1996 Dec;8(8):533–544. doi: 10.1016/s0898-6568(96)00122-2. [DOI] [PubMed] [Google Scholar]
  14. Hill C. S., Wynne J., Treisman R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell. 1995 Jun 30;81(7):1159–1170. doi: 10.1016/s0092-8674(05)80020-0. [DOI] [PubMed] [Google Scholar]
  15. Hogan B. L., Blessing M., Winnier G. E., Suzuki N., Jones C. M. Growth factors in development: the role of TGF-beta related polypeptide signalling molecules in embryogenesis. Dev Suppl. 1994:53–60. [PubMed] [Google Scholar]
  16. Howe J. A., Howell M., Hunt T., Newport J. W. Identification of a developmental timer regulating the stability of embryonic cyclin A and a new somatic A-type cyclin at gastrulation. Genes Dev. 1995 May 15;9(10):1164–1176. doi: 10.1101/gad.9.10.1164. [DOI] [PubMed] [Google Scholar]
  17. Huang H. C., Murtaugh L. C., Vize P. D., Whitman M. Identification of a potential regulator of early transcriptional responses to mesoderm inducers in the frog embryo. EMBO J. 1995 Dec 1;14(23):5965–5973. doi: 10.1002/j.1460-2075.1995.tb00285.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kaufmann E., Knöchel W. Five years on the wings of fork head. Mech Dev. 1996 Jun;57(1):3–20. doi: 10.1016/0925-4773(96)00539-4. [DOI] [PubMed] [Google Scholar]
  19. Kaufmann E., Paul H., Friedle H., Metz A., Scheucher M., Clement J. H., Knöchel W. Antagonistic actions of activin A and BMP-2/4 control dorsal lip-specific activation of the early response gene XFD-1' in Xenopus laevis embryos. EMBO J. 1996 Dec 2;15(23):6739–6749. [PMC free article] [PubMed] [Google Scholar]
  20. Kim J., Johnson K., Chen H. J., Carroll S., Laughon A. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature. 1997 Jul 17;388(6639):304–308. doi: 10.1038/40906. [DOI] [PubMed] [Google Scholar]
  21. Kingsley D. M. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994 Jan;8(2):133–146. doi: 10.1101/gad.8.2.133. [DOI] [PubMed] [Google Scholar]
  22. Knöchel S., Lef J., Clement J., Klocke B., Hille S., Köster M., Knöchel W. Activin A induced expression of a fork head related gene in posterior chordamesoderm (notochord) of Xenopus laevis embryos. Mech Dev. 1992 Aug;38(2):157–165. doi: 10.1016/0925-4773(92)90007-7. [DOI] [PubMed] [Google Scholar]
  23. Kretzschmar M., Liu F., Hata A., Doody J., Massagué J. The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 1997 Apr 15;11(8):984–995. doi: 10.1101/gad.11.8.984. [DOI] [PubMed] [Google Scholar]
  24. Lagna G., Hata A., Hemmati-Brivanlou A., Massagué J. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature. 1996 Oct 31;383(6603):832–836. doi: 10.1038/383832a0. [DOI] [PubMed] [Google Scholar]
  25. Lecuit T., Brook W. J., Ng M., Calleja M., Sun H., Cohen S. M. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature. 1996 May 30;381(6581):387–393. doi: 10.1038/381387a0. [DOI] [PubMed] [Google Scholar]
  26. Lemaire P., Kodjabachian L. The vertebrate organizer: structure and molecules. Trends Genet. 1996 Dec;12(12):525–531. doi: 10.1016/s0168-9525(97)81401-1. [DOI] [PubMed] [Google Scholar]
  27. Liu F., Hata A., Baker J. C., Doody J., Cárcamo J., Harland R. M., Massagué J. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature. 1996 Jun 13;381(6583):620–623. doi: 10.1038/381620a0. [DOI] [PubMed] [Google Scholar]
  28. Macías-Silva M., Abdollah S., Hoodless P. A., Pirone R., Attisano L., Wrana J. L. MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell. 1996 Dec 27;87(7):1215–1224. doi: 10.1016/s0092-8674(00)81817-6. [DOI] [PubMed] [Google Scholar]
  29. Massagué J., Weis-Garcia F. Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals. Cancer Surv. 1996;27:41–64. [PubMed] [Google Scholar]
  30. Massaous J., Hata A. TGF-beta signalling through the Smad pathway. Trends Cell Biol. 1997 May;7(5):187–192. doi: 10.1016/S0962-8924(97)01036-2. [DOI] [PubMed] [Google Scholar]
  31. Meersseman G., Verschueren K., Nelles L., Blumenstock C., Kraft H., Wuytens G., Remacle J., Kozak C. A., Tylzanowski P., Niehrs C. The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in the Xenopus embryo and transcriptional activation. Mech Dev. 1997 Jan;61(1-2):127–140. doi: 10.1016/s0925-4773(96)00629-6. [DOI] [PubMed] [Google Scholar]
  32. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mohun T. J., Taylor M. V., Garrett N., Gurdon J. B. The CArG promoter sequence is necessary for muscle-specific transcription of the cardiac actin gene in Xenopus embryos. EMBO J. 1989 Apr;8(4):1153–1161. doi: 10.1002/j.1460-2075.1989.tb03486.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nellen D., Burke R., Struhl G., Basler K. Direct and long-range action of a DPP morphogen gradient. Cell. 1996 May 3;85(3):357–368. doi: 10.1016/s0092-8674(00)81114-9. [DOI] [PubMed] [Google Scholar]
  35. Newport J., Kirschner M. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell. 1982 Oct;30(3):687–696. doi: 10.1016/0092-8674(82)90273-2. [DOI] [PubMed] [Google Scholar]
  36. Peng H. B. Xenopus laevis: Practical uses in cell and molecular biology. Solutions and protocols. Methods Cell Biol. 1991;36:657–662. [PubMed] [Google Scholar]
  37. Pollock R., Treisman R. Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 1991 Dec;5(12A):2327–2341. doi: 10.1101/gad.5.12a.2327. [DOI] [PubMed] [Google Scholar]
  38. Ruiz i Altaba A., Jessell T. M. Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis. Development. 1992 Sep;116(1):81–93. doi: 10.1242/dev.116.Supplement.81. [DOI] [PubMed] [Google Scholar]
  39. Ruiz i Altaba A., Prezioso V. R., Darnell J. E., Jessell T. M. Sequential expression of HNF-3 beta and HNF-3 alpha by embryonic organizing centers: the dorsal lip/node, notochord and floor plate. Mech Dev. 1993 Dec;44(2-3):91–108. doi: 10.1016/0925-4773(93)90060-b. [DOI] [PubMed] [Google Scholar]
  40. Sasai Y., Lu B., Steinbeisser H., Geissert D., Gont L. K., De Robertis E. M. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell. 1994 Dec 2;79(5):779–790. doi: 10.1016/0092-8674(94)90068-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith J. C. Mesoderm-inducing factors and mesodermal patterning. Curr Opin Cell Biol. 1995 Dec;7(6):856–861. doi: 10.1016/0955-0674(95)80070-0. [DOI] [PubMed] [Google Scholar]
  42. Smith J. C. Mesoderm-inducing factors in early vertebrate development. EMBO J. 1993 Dec;12(12):4463–4470. doi: 10.1002/j.1460-2075.1993.tb06135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Smith J. C., Price B. M., Green J. B., Weigel D., Herrmann B. G. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell. 1991 Oct 4;67(1):79–87. doi: 10.1016/0092-8674(91)90573-h. [DOI] [PubMed] [Google Scholar]
  44. Thomsen G. H. Antagonism within and around the organizer: BMP inhibitors in vertebrate body patterning. Trends Genet. 1997 Jun;13(6):209–211. doi: 10.1016/S0168-9525(97)01117-7. [DOI] [PubMed] [Google Scholar]
  45. Treisman R. Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5' element and c-fos 3' sequences. Cell. 1985 Oct;42(3):889–902. doi: 10.1016/0092-8674(85)90285-5. [DOI] [PubMed] [Google Scholar]
  46. Watabe T., Kim S., Candia A., Rothbächer U., Hashimoto C., Inoue K., Cho K. W. Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev. 1995 Dec 15;9(24):3038–3050. doi: 10.1101/gad.9.24.3038. [DOI] [PubMed] [Google Scholar]
  47. Weinstein D. C., Ruiz i Altaba A., Chen W. S., Hoodless P., Prezioso V. R., Jessell T. M., Darnell J. E., Jr The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell. 1994 Aug 26;78(4):575–588. doi: 10.1016/0092-8674(94)90523-1. [DOI] [PubMed] [Google Scholar]
  48. Wu R. Y., Zhang Y., Feng X. H., Derynck R. Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol Cell Biol. 1997 May;17(5):2521–2528. doi: 10.1128/mcb.17.5.2521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zhang Y., Musci T., Derynck R. The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function. Curr Biol. 1997 Apr 1;7(4):270–276. doi: 10.1016/s0960-9822(06)00123-0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES