Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1997 Dec 15;16(24):7422–7431. doi: 10.1093/emboj/16.24.7422

Position-dependent and promoter-specific regulation of gene expression in Trypanosoma brucei.

D Horn 1, G A Cross 1
PMCID: PMC1170342  PMID: 9405371

Abstract

Trypanosoma brucei evades the mammalian immune response by a process of antigenic variation. This involves mutually exclusive and alternating expression of telomere-proximal variant surface glycoprotein genes (vsgs), which is controlled at the level of transcription. To examine transcription repression in T.brucei we inserted reporter genes, under the control of either rRNA or vsg expression site (ES) promoters, into various chromosomal loci. Position-dependent repression of both promoters was observed in the mammalian stage of the life cycle (bloodstream forms). Repression of promoters inserted into a silent ES was more pronounced closer to the telomere and was bi-directional. Transcription from both ES and rRNA promoters was also efficiently repressed at a non-telomeric vsg locus in bloodstream-form trypanosomes. In cultured tsetse fly midgut-stage (procyclic) trypanosomes, in which vsg is not normally expressed, all inserted rRNA promoters were derepressed but ES promoters remained silent. Our results suggest that vsg promoters and ectopic rRNA promoters in bloodstream-form T.brucei are restrained by position effects related to their proximity to vsgs or other features of the ES. Sequences present in rRNA promoters but absent from vsg ES promoters appear to be responsible for rRNA promoter-specific derepression in procyclic cells.

Full Text

The Full Text of this article is available as a PDF (351.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alarcon C. M., Son H. J., Hall T., Donelson J. E. A monocistronic transcript for a trypanosome variant surface glycoprotein. Mol Cell Biol. 1994 Aug;14(8):5579–5591. doi: 10.1128/mcb.14.8.5579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aline R. F., Jr, Stuart K. Trypanosoma brucei: conserved sequence organization 3' to telomeric variant surface glycoprotein genes. Exp Parasitol. 1989 Jan;68(1):57–66. doi: 10.1016/0014-4894(89)90008-8. [DOI] [PubMed] [Google Scholar]
  3. Aparicio O. M., Gottschling D. E. Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Genes Dev. 1994 May 15;8(10):1133–1146. doi: 10.1101/gad.8.10.1133. [DOI] [PubMed] [Google Scholar]
  4. Bangs J. D., Ransom D. M., McDowell M. A., Brouch E. M. Expression of bloodstream variant surface glycoproteins in procyclic stage Trypanosoma brucei: role of GPI anchors in secretion. EMBO J. 1997 Jul 16;16(14):4285–4294. doi: 10.1093/emboj/16.14.4285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bayne R. A., Broccoli D., Taggart M. H., Thomson E. J., Farr C. J., Cooke H. J. Sandwiching of a gene within 12 kb of a functional telomere and alpha satellite does not result in silencing. Hum Mol Genet. 1994 Apr;3(4):539–546. doi: 10.1093/hmg/3.4.539. [DOI] [PubMed] [Google Scholar]
  6. Bernards A., Michels P. A., Lincke C. R., Borst P. Growth of chromosome ends in multiplying trypanosomes. Nature. 1983 Jun 16;303(5918):592–597. doi: 10.1038/303592a0. [DOI] [PubMed] [Google Scholar]
  7. Blackburn E. H., Challoner P. B. Identification of a telomeric DNA sequence in Trypanosoma brucei. Cell. 1984 Feb;36(2):447–457. doi: 10.1016/0092-8674(84)90238-1. [DOI] [PubMed] [Google Scholar]
  8. Blundell P. A., Rudenko G., Borst P. Targeting of exogenous DNA into Trypanosoma brucei requires a high degree of homology between donor and target DNA. Mol Biochem Parasitol. 1996 Feb-Mar;76(1-2):215–229. doi: 10.1016/0166-6851(95)02560-x. [DOI] [PubMed] [Google Scholar]
  9. Brown S. D., Huang J., Van der Ploeg L. H. The promoter for the procyclic acidic repetitive protein (PARP) genes of Trypanosoma brucei shares features with RNA polymerase I promoters. Mol Cell Biol. 1992 Jun;12(6):2644–2652. doi: 10.1128/mcb.12.6.2644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Campbell D. A., van Bree M. P., Boothroyd J. C. The 5'-limit of transposition and upstream barren region of a trypanosome VSG gene: tandem 76 base-pair repeats flanking (TAA)90. Nucleic Acids Res. 1984 Mar 26;12(6):2759–2774. doi: 10.1093/nar/12.6.2759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carruthers V. B., van der Ploeg L. H., Cross G. A. DNA-mediated transformation of bloodstream-form Trypanosoma brucei. Nucleic Acids Res. 1993 May 25;21(10):2537–2538. doi: 10.1093/nar/21.10.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chung H. M., Lee M. G., Van der Ploeg L. H. RNA polymerase I-mediated protein-coding gene expression in Trypanosoma brucei. Parasitol Today. 1992 Dec;8(12):414–418. doi: 10.1016/0169-4758(92)90194-7. [DOI] [PubMed] [Google Scholar]
  13. Cook P. R. RNA polymerase: structural determinant of the chromatin loop and the chromosome. Bioessays. 1994 Jun;16(6):425–430. doi: 10.1002/bies.950160611. [DOI] [PubMed] [Google Scholar]
  14. Cross G. A. Antigenic variation in trypanosomes: secrets surface slowly. Bioessays. 1996 Apr;18(4):283–291. doi: 10.1002/bies.950180406. [DOI] [PubMed] [Google Scholar]
  15. Cross G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975 Dec;71(3):393–417. doi: 10.1017/s003118200004717x. [DOI] [PubMed] [Google Scholar]
  16. Csink A. K., Henikoff S. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature. 1996 Jun 6;381(6582):529–531. doi: 10.1038/381529a0. [DOI] [PubMed] [Google Scholar]
  17. Dernburg A. F., Broman K. W., Fung J. C., Marshall W. F., Philips J., Agard D. A., Sedat J. W. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell. 1996 May 31;85(5):745–759. doi: 10.1016/s0092-8674(00)81240-4. [DOI] [PubMed] [Google Scholar]
  18. Ehlers B., Czichos J., Overath P. RNA turnover in Trypanosoma brucei. Mol Cell Biol. 1987 Mar;7(3):1242–1249. doi: 10.1128/mcb.7.3.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Esser K. M., Schoenbechler M. J. Expression of two variant surface glycoproteins on individual African trypanosomes during antigen switching. Science. 1985 Jul 12;229(4709):190–193. doi: 10.1126/science.3892689. [DOI] [PubMed] [Google Scholar]
  20. Felsenfeld G. Chromatin unfolds. Cell. 1996 Jul 12;86(1):13–19. doi: 10.1016/s0092-8674(00)80073-2. [DOI] [PubMed] [Google Scholar]
  21. Gerasimova T. I., Corces V. G. Boundary and insulator elements in chromosomes. Curr Opin Genet Dev. 1996 Apr;6(2):185–192. doi: 10.1016/s0959-437x(96)80049-9. [DOI] [PubMed] [Google Scholar]
  22. Gommers-Ampt J. H., Van Leeuwen F., de Beer A. L., Vliegenthart J. F., Dizdaroglu M., Kowalak J. A., Crain P. F., Borst P. beta-D-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. brucei. Cell. 1993 Dec 17;75(6):1129–1136. doi: 10.1016/0092-8674(93)90322-h. [DOI] [PubMed] [Google Scholar]
  23. Gottesdiener K., Garciá-Anoveros J., Lee M. G., Van der Ploeg L. H. Chromosome organization of the protozoan Trypanosoma brucei. Mol Cell Biol. 1990 Nov;10(11):6079–6083. doi: 10.1128/mcb.10.11.6079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gottschling D. E., Aparicio O. M., Billington B. L., Zakian V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell. 1990 Nov 16;63(4):751–762. doi: 10.1016/0092-8674(90)90141-z. [DOI] [PubMed] [Google Scholar]
  25. Graham S. V., Barry J. D. Transcriptional regulation of metacyclic variant surface glycoprotein gene expression during the life cycle of Trypanosoma brucei. Mol Cell Biol. 1995 Nov;15(11):5945–5956. doi: 10.1128/mcb.15.11.5945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hehl A., Roditi I. The regulation of procyclin expression in Trypanosoma bruceli: making or breaking the rules? Parasitol Today. 1994 Nov;10(11):442–445. doi: 10.1016/0169-4758(94)90180-5. [DOI] [PubMed] [Google Scholar]
  27. Horn D., Cross G. A. A developmentally regulated position effect at a telomeric locus in Trypanosoma brucei. Cell. 1995 Nov 17;83(4):555–561. doi: 10.1016/0092-8674(95)90095-0. [DOI] [PubMed] [Google Scholar]
  28. Horn D., Cross G. A. Analysis of Trypanosoma brucei vsg expression site switching in vitro. Mol Biochem Parasitol. 1997 Feb;84(2):189–201. doi: 10.1016/s0166-6851(96)02794-6. [DOI] [PubMed] [Google Scholar]
  29. Hug M., Carruthers V. B., Hartmann C., Sherman D. S., Cross G. A., Clayton C. A possible role for the 3'-untranslated region in developmental regulation in Trypanosoma brucei. Mol Biochem Parasitol. 1993 Sep;61(1):87–95. doi: 10.1016/0166-6851(93)90161-p. [DOI] [PubMed] [Google Scholar]
  30. Janz L., Clayton C. The PARP and rRNA promoters of Trypanosoma brucei are composed of dissimilar sequence elements that are functionally interchangeable. Mol Cell Biol. 1994 Sep;14(9):5804–5811. doi: 10.1128/mcb.14.9.5804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Jefferies D., Tebabi P., Le Ray D., Pays E. The ble resistance gene as a new selectable marker for Trypanosoma brucei: fly transmission of stable procyclic transformants to produce antibiotic resistant bloodstream forms. Nucleic Acids Res. 1993 Jan 25;21(2):191–195. doi: 10.1093/nar/21.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Jefferies D., Tebabi P., Pays E. Transient activity assays of the Trypanosoma brucei variant surface glycoprotein gene promoter: control of gene expression at the posttranscriptional level. Mol Cell Biol. 1991 Jan;11(1):338–343. doi: 10.1128/mcb.11.1.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kooter J. M., Borst P. Alpha-amanitin-insensitive transcription of variant surface glycoprotein genes provides further evidence for discontinuous transcription in trypanosomes. Nucleic Acids Res. 1984 Dec 21;12(24):9457–9472. doi: 10.1093/nar/12.24.9457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kyrion G., Liu K., Liu C., Lustig A. J. RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. Genes Dev. 1993 Jul;7(7A):1146–1159. doi: 10.1101/gad.7.7a.1146. [DOI] [PubMed] [Google Scholar]
  35. Laird P. W., Jaenisch R. The role of DNA methylation in cancer genetic and epigenetics. Annu Rev Genet. 1996;30:441–464. doi: 10.1146/annurev.genet.30.1.441. [DOI] [PubMed] [Google Scholar]
  36. Lee M. G. A foreign transcription unit in the inactivated VSG gene expression site of the procyclic form of Trypanosoma brucei and formation of large episomes in stably transformed trypanosomes. Mol Biochem Parasitol. 1995 Feb;69(2):223–238. doi: 10.1016/0166-6851(94)00186-q. [DOI] [PubMed] [Google Scholar]
  37. Liu A. Y., Van der Ploeg L. H., Rijsewijk F. A., Borst P. The transposition unit of variant surface glycoprotein gene 118 of Trypanosoma brucei. Presence of repeated elements at its border and absence of promoter-associated sequences. J Mol Biol. 1983 Jun 15;167(1):57–75. doi: 10.1016/s0022-2836(83)80034-5. [DOI] [PubMed] [Google Scholar]
  38. Lohe A. R., Hilliker A. J. Return of the H-word (heterochromatin). Curr Opin Genet Dev. 1995 Dec;5(6):746–755. doi: 10.1016/0959-437x(95)80007-r. [DOI] [PubMed] [Google Scholar]
  39. Loo S., Rine J. Silencing and heritable domains of gene expression. Annu Rev Cell Dev Biol. 1995;11:519–548. doi: 10.1146/annurev.cb.11.110195.002511. [DOI] [PubMed] [Google Scholar]
  40. Majumder H. K., Boothroyd J. C., Weber H. Homologous 3'-terminal regions of mRNAs for surface antigens of different antigenic variants of Trypanosoma brucei. Nucleic Acids Res. 1981 Sep 25;9(18):4745–4753. doi: 10.1093/nar/9.18.4745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Navarro M., Cross G. A. DNA rearrangements associated with multiple consecutive directed antigenic switches in Trypanosoma brucei. Mol Cell Biol. 1996 Jul;16(7):3615–3625. doi: 10.1128/mcb.16.7.3615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nimmo E. R., Cranston G., Allshire R. C. Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. EMBO J. 1994 Aug 15;13(16):3801–3811. doi: 10.1002/j.1460-2075.1994.tb06691.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Patnaik P. K., Axelrod N., Van der Ploeg L. H., Cross G. A. Artificial linear mini-chromosomes for Trypanosoma brucei. Nucleic Acids Res. 1996 Feb 15;24(4):668–675. doi: 10.1093/nar/24.4.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Pays E., Coquelet H., Tebabi P., Pays A., Jefferies D., Steinert M., Koenig E., Williams R. O., Roditi I. Trypanosoma brucei: constitutive activity of the VSG and procyclin gene promoters. EMBO J. 1990 Oct;9(10):3145–3151. doi: 10.1002/j.1460-2075.1990.tb07512.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pays E., Laurent M., Delinte K., Van Meirvenne N., Steinert M. Differential size variations between transcriptionally active and inactive telomeres of Trypanosoma brucei. Nucleic Acids Res. 1983 Dec 10;11(23):8137–8147. doi: 10.1093/nar/11.23.8137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pham V. P., Qi C. C., Gottesdiener K. M. A detailed mutational analysis of the VSG gene expression site promoter. Mol Biochem Parasitol. 1996 Jan;75(2):241–254. doi: 10.1016/0166-6851(95)02513-8. [DOI] [PubMed] [Google Scholar]
  47. Qi C. C., Urményi T., Gottesdiener K. M. Analysis of a hybrid PARP/VSG ES promoter in procyclic trypanosomes. Mol Biochem Parasitol. 1996 May;77(2):147–159. doi: 10.1016/0166-6851(96)02588-1. [DOI] [PubMed] [Google Scholar]
  48. Renauld H., Aparicio O. M., Zierath P. D., Billington B. L., Chhablani S. K., Gottschling D. E. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev. 1993 Jul;7(7A):1133–1145. doi: 10.1101/gad.7.7a.1133. [DOI] [PubMed] [Google Scholar]
  49. Rudenko G., Blundell P. A., Dirks-Mulder A., Kieft R., Borst P. A ribosomal DNA promoter replacing the promoter of a telomeric VSG gene expression site can be efficiently switched on and off in T. brucei. Cell. 1995 Nov 17;83(4):547–553. doi: 10.1016/0092-8674(95)90094-2. [DOI] [PubMed] [Google Scholar]
  50. Rudenko G., Blundell P. A., Taylor M. C., Kieft R., Borst P. VSG gene expression site control in insect form Trypanosoma brucei. EMBO J. 1994 Nov 15;13(22):5470–5482. doi: 10.1002/j.1460-2075.1994.tb06882.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Rudenko G., Chung H. M., Pham V. P., Van der Ploeg L. H. RNA polymerase I can mediate expression of CAT and neo protein-coding genes in Trypanosoma brucei. EMBO J. 1991 Nov;10(11):3387–3397. doi: 10.1002/j.1460-2075.1991.tb04903.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sherman D. R., Janz L., Hug M., Clayton C. Anatomy of the parp gene promoter of Trypanosoma brucei. EMBO J. 1991 Nov;10(11):3379–3386. doi: 10.1002/j.1460-2075.1991.tb04902.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sprung C. N., Sabatier L., Murnane J. P. Effect of telomere length on telomeric gene expression. Nucleic Acids Res. 1996 Nov 1;24(21):4336–4340. doi: 10.1093/nar/24.21.4336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Strouboulis J., Wolffe A. P. Functional compartmentalization of the nucleus. J Cell Sci. 1996 Aug;109(Pt 8):1991–2000. doi: 10.1242/jcs.109.8.1991. [DOI] [PubMed] [Google Scholar]
  55. Urményi T. P., Van der Ploeg L. H. PARP promoter-mediated activation of a VSG expression site promoter in insect form Trypanosoma brucei. Nucleic Acids Res. 1995 Mar 25;23(6):1010–1018. doi: 10.1093/nar/23.6.1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Van der Ploeg L. H., Liu A. Y., Borst P. Structure of the growing telomeres of Trypanosomes. Cell. 1984 Feb;36(2):459–468. doi: 10.1016/0092-8674(84)90239-3. [DOI] [PubMed] [Google Scholar]
  57. Van der Ploeg L. H., Valerio D., De Lange T., Bernards A., Borst P., Grosveld F. G. An analysis of cosmid clones of nuclear DNA from Trypanosoma brucei shows that the genes for variant surface glycoproteins are clustered in the genome. Nucleic Acids Res. 1982 Oct 11;10(19):5905–5923. doi: 10.1093/nar/10.19.5905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Vanhamme L., Pays A., Tebabi P., Alexandre S., Pays E. Specific binding of proteins to the noncoding strand of a crucial element of the variant surface glycoprotein, procyclin, and ribosomal promoters of trypanosoma brucei. Mol Cell Biol. 1995 Oct;15(10):5598–5606. doi: 10.1128/mcb.15.10.5598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Vanhamme L., Pays E. Control of gene expression in trypanosomes. Microbiol Rev. 1995 Jun;59(2):223–240. doi: 10.1128/mr.59.2.223-240.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wade P. A., Pruss D., Wolffe A. P. Histone acetylation: chromatin in action. Trends Biochem Sci. 1997 Apr;22(4):128–132. doi: 10.1016/s0968-0004(97)01016-5. [DOI] [PubMed] [Google Scholar]
  61. Weiden M., Osheim Y. N., Beyer A. L., Van der Ploeg L. H. Chromosome structure: DNA nucleotide sequence elements of a subset of the minichromosomes of the protozoan Trypanosoma brucei. Mol Cell Biol. 1991 Aug;11(8):3823–3834. doi: 10.1128/mcb.11.8.3823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. White T. C., Rudenko G., Borst P. Three small RNAs within the 10 kb trypanosome rRNA transcription unit are analogous to domain VII of other eukaryotic 28S rRNAs. Nucleic Acids Res. 1986 Dec 9;14(23):9471–9489. doi: 10.1093/nar/14.23.9471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Wirtz E., Clayton C. Inducible gene expression in trypanosomes mediated by a prokaryotic repressor. Science. 1995 May 26;268(5214):1179–1183. doi: 10.1126/science.7761835. [DOI] [PubMed] [Google Scholar]
  64. Zakian V. A. Structure, function, and replication of Saccharomyces cerevisiae telomeres. Annu Rev Genet. 1996;30:141–172. doi: 10.1146/annurev.genet.30.1.141. [DOI] [PubMed] [Google Scholar]
  65. Zomerdijk J. C., Kieft R., Borst P. Insertion of the promoter for a variant surface glycoprotein gene expression site in an RNA polymerase II transcription unit of procyclic Trypanosoma brucei. Mol Biochem Parasitol. 1993 Feb;57(2):295–304. doi: 10.1016/0166-6851(93)90205-c. [DOI] [PubMed] [Google Scholar]
  66. Zomerdijk J. C., Kieft R., Shiels P. G., Borst P. Alpha-amanitin-resistant transcription units in trypanosomes: a comparison of promoter sequences for a VSG gene expression site and for the ribosomal RNA genes. Nucleic Acids Res. 1991 Oct 11;19(19):5153–5158. doi: 10.1093/nar/19.19.5153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Zomerdijk J. C., Ouellette M., ten Asbroek A. L., Kieft R., Bommer A. M., Clayton C. E., Borst P. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei. EMBO J. 1990 Sep;9(9):2791–2801. doi: 10.1002/j.1460-2075.1990.tb07467.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. van den Hoff M. J., Moorman A. F., Lamers W. H. Electroporation in 'intracellular' buffer increases cell survival. Nucleic Acids Res. 1992 Jun 11;20(11):2902–2902. doi: 10.1093/nar/20.11.2902. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES