Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jan 2;17(1):306–316. doi: 10.1093/emboj/17.1.306

Site-specific repair of cyclobutane pyrimidine dimers in a positioned nucleosome by photolyase and T4 endonuclease V in vitro.

U Schieferstein 1, F Thoma 1
PMCID: PMC1170381  PMID: 9427764

Abstract

Since genomic DNA is folded into nucleosomes, and DNA damage is generated all over the genome, a central question is how DNA repair enzymes access DNA lesions and how they cope with nucleosomes. To investigate this topic, we used a reconstituted nucleosome (HISAT nucleosome) as a substrate to generate DNA lesions by UV light (cyclobutane pyrimidine dimers, CPDs), and DNA photolyase and T4 endonuclease V (T4-endoV) as repair enzymes. The HISAT nucleosome is positioned precisely and contains a long polypyrimidine region which allows one to monitor formation and repair of CPDs over three helical turns. Repair by photolyase and T4-endoV was inefficient in nucleosomes compared with repair in naked DNA. However, both enzymes showed a pronounced site-specific modulation of repair on the nucleosome surface. Removal of the histone tails did not substantially enhance repair efficiency nor alter the site specificity of repair. Although photolyase and T4-endoV are different enzymes with different mechanisms, they exhibited a similar site specificity in nucleosomes. This implies that the nucleosome structure has a decisive role in DNA repair by exerting a strong constraint on damage accessibility. These findings may serve as a model for damage recognition and repair by more complex repair mechanisms in chromatin.

Full Text

The Full Text of this article is available as a PDF (692.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ausio J., Dong F., van Holde K. E. Use of selectively trypsinized nucleosome core particles to analyze the role of the histone "tails" in the stabilization of the nucleosome. J Mol Biol. 1989 Apr 5;206(3):451–463. doi: 10.1016/0022-2836(89)90493-2. [DOI] [PubMed] [Google Scholar]
  2. Becker M. M., Wang Z. Origin of ultraviolet damage in DNA. J Mol Biol. 1989 Dec 5;210(3):429–438. doi: 10.1016/0022-2836(89)90120-4. [DOI] [PubMed] [Google Scholar]
  3. Böhm L., Crane-Robinson C. Proteases as structural probes for chromatin: the domain structure of histones. Biosci Rep. 1984 May;4(5):365–386. doi: 10.1007/BF01122502. [DOI] [PubMed] [Google Scholar]
  4. Drew H. R., Travers A. A. DNA structural variations in the E. coli tyrT promoter. Cell. 1984 Jun;37(2):491–502. doi: 10.1016/0092-8674(84)90379-9. [DOI] [PubMed] [Google Scholar]
  5. Evans D. H., Linn S. Excision repair of pyrimidine dimers from simian virus 40 minichromosomes in vitro. J Biol Chem. 1984 Aug 25;259(16):10252–10259. [PubMed] [Google Scholar]
  6. Gale J. M., Nissen K. A., Smerdon M. J. UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6644–6648. doi: 10.1073/pnas.84.19.6644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gale J. M., Smerdon M. J. Photofootprint of nucleosome core DNA in intact chromatin having different structural states. J Mol Biol. 1988 Dec 20;204(4):949–958. doi: 10.1016/0022-2836(88)90054-x. [DOI] [PubMed] [Google Scholar]
  8. Gale J. M., Smerdon M. J. UV induced (6-4) photoproducts are distributed differently than cyclobutane dimers in nucleosomes. Photochem Photobiol. 1990 Apr;51(4):411–417. doi: 10.1111/j.1751-1097.1990.tb01732.x. [DOI] [PubMed] [Google Scholar]
  9. Gordon L. K., Haseltine W. A. Comparison of the cleavage of pyrimidine dimers by the bacteriophage T4 and Micrococcus luteus UV-specific endonucleases. J Biol Chem. 1980 Dec 25;255(24):12047–12050. [PubMed] [Google Scholar]
  10. Hayes J. J., Bashkin J., Tullius T. D., Wolffe A. P. The histone core exerts a dominant constraint on the structure of DNA in a nucleosome. Biochemistry. 1991 Aug 27;30(34):8434–8440. doi: 10.1021/bi00098a022. [DOI] [PubMed] [Google Scholar]
  11. Hayes J. J., Clark D. J., Wolffe A. P. Histone contributions to the structure of DNA in the nucleosome. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6829–6833. doi: 10.1073/pnas.88.15.6829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Husain I., Sancar G. B., Holbrook S. R., Sancar A. Mechanism of damage recognition by Escherichia coli DNA photolyase. J Biol Chem. 1987 Sep 25;262(27):13188–13197. [PubMed] [Google Scholar]
  13. Jensen K. A., Smerdon M. J. DNA repair within nucleosome cores of UV-irradiated human cells. Biochemistry. 1990 May 22;29(20):4773–4782. doi: 10.1021/bi00472a005. [DOI] [PubMed] [Google Scholar]
  14. Kim S. T., Sancar A. Effect of base, pentose, and phosphodiester backbone structures on binding and repair of pyrimidine dimers by Escherichia coli DNA photolyase. Biochemistry. 1991 Sep 3;30(35):8623–8630. doi: 10.1021/bi00099a019. [DOI] [PubMed] [Google Scholar]
  15. Lahm A., Suck D. DNase I-induced DNA conformation. 2 A structure of a DNase I-octamer complex. J Mol Biol. 1991 Dec 5;222(3):645–667. doi: 10.1016/0022-2836(91)90502-w. [DOI] [PubMed] [Google Scholar]
  16. Losa R., Omari S., Thoma F. Poly(dA).poly(dT) rich sequences are not sufficient to exclude nucleosome formation in a constitutive yeast promoter. Nucleic Acids Res. 1990 Jun 25;18(12):3495–3502. doi: 10.1093/nar/18.12.3495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
  18. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  19. Pruss D., Hayes J. J., Wolffe A. P. Nucleosomal anatomy--where are the histones? Bioessays. 1995 Feb;17(2):161–170. doi: 10.1002/bies.950170211. [DOI] [PubMed] [Google Scholar]
  20. Richmond T. J., Finch J. T., Rushton B., Rhodes D., Klug A. Structure of the nucleosome core particle at 7 A resolution. Nature. 1984 Oct 11;311(5986):532–537. doi: 10.1038/311532a0. [DOI] [PubMed] [Google Scholar]
  21. Sancar A., Sancar G. B. DNA repair enzymes. Annu Rev Biochem. 1988;57:29–67. doi: 10.1146/annurev.bi.57.070188.000333. [DOI] [PubMed] [Google Scholar]
  22. Sancar A. Structure and function of DNA photolyase. Biochemistry. 1994 Jan 11;33(1):2–9. doi: 10.1021/bi00167a001. [DOI] [PubMed] [Google Scholar]
  23. Schieferstein U., Thoma F. Modulation of cyclobutane pyrimidine dimer formation in a positioned nucleosome containing poly(dA.dT) tracts. Biochemistry. 1996 Jun 18;35(24):7705–7714. doi: 10.1021/bi953011r. [DOI] [PubMed] [Google Scholar]
  24. Simpson R. T., Stafford D. W. Structural features of a phased nucleosome core particle. Proc Natl Acad Sci U S A. 1983 Jan;80(1):51–55. doi: 10.1073/pnas.80.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smerdon M. J. DNA repair and the role of chromatin structure. Curr Opin Cell Biol. 1991 Jun;3(3):422–428. doi: 10.1016/0955-0674(91)90069-b. [DOI] [PubMed] [Google Scholar]
  26. Smerdon M. J., Thoma F. Site-specific DNA repair at the nucleosome level in a yeast minichromosome. Cell. 1990 May 18;61(4):675–684. doi: 10.1016/0092-8674(90)90479-x. [DOI] [PubMed] [Google Scholar]
  27. Steger D. J., Workman J. L. Remodeling chromatin structures for transcription: what happens to the histones? Bioessays. 1996 Nov;18(11):875–884. doi: 10.1002/bies.950181106. [DOI] [PubMed] [Google Scholar]
  28. Sugasawa K., Masutani C., Hanaoka F. Cell-free repair of UV-damaged simian virus 40 chromosomes in human cell extracts. I. Development of a cell-free system detecting excision repair of UV-irradiated SV40 chromosomes. J Biol Chem. 1993 Apr 25;268(12):9098–9104. [PubMed] [Google Scholar]
  29. Suquet C., Smerdon M. J. UV damage to DNA strongly influences its rotational setting on the histone surface of reconstituted nucleosomes. J Biol Chem. 1993 Nov 15;268(32):23755–23757. [PubMed] [Google Scholar]
  30. Suter B., Livingstone-Zatchej M., Thoma F. Chromatin structure modulates DNA repair by photolyase in vivo. EMBO J. 1997 Apr 15;16(8):2150–2160. doi: 10.1093/emboj/16.8.2150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tanaka S., Livingstone-Zatchej M., Thoma F. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context. J Mol Biol. 1996 Apr 19;257(5):919–934. doi: 10.1006/jmbi.1996.0212. [DOI] [PubMed] [Google Scholar]
  32. Taylor J. S., Garrett D. S., Brockie I. R., Svoboda D. L., Telser J. 1H NMR assignment and melting temperature study of cis-syn and trans-syn thymine dimer containing duplexes of d(CGTATTATGC).d(GCATAATACG). Biochemistry. 1990 Sep 18;29(37):8858–8866. doi: 10.1021/bi00489a049. [DOI] [PubMed] [Google Scholar]
  33. Thoma F. Nucleosome positioning. Biochim Biophys Acta. 1992 Feb 28;1130(1):1–19. doi: 10.1016/0167-4781(92)90455-9. [DOI] [PubMed] [Google Scholar]
  34. Vassylyev D. G., Kashiwagi T., Mikami Y., Ariyoshi M., Iwai S., Ohtsuka E., Morikawa K. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell. 1995 Dec 1;83(5):773–782. doi: 10.1016/0092-8674(95)90190-6. [DOI] [PubMed] [Google Scholar]
  35. Wang C. I., Taylor J. S. Site-specific effect of thymine dimer formation on dAn.dTn tract bending and its biological implications. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9072–9076. doi: 10.1073/pnas.88.20.9072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wang Z. G., Wu X. H., Friedberg E. C. Nucleotide excision repair of DNA by human cell extracts is suppressed in reconstituted nucleosomes. J Biol Chem. 1991 Nov 25;266(33):22472–22478. [PubMed] [Google Scholar]
  37. Wellinger R. E., Thoma F. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene. EMBO J. 1997 Aug 15;16(16):5046–5056. doi: 10.1093/emboj/16.16.5046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wood R. D. DNA repair in eukaryotes. Annu Rev Biochem. 1996;65:135–167. doi: 10.1146/annurev.bi.65.070196.001031. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES