Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jan 2;17(1):317–324. doi: 10.1093/emboj/17.1.317

Dynamic modes of the flipped-out cytosine during HhaI methyltransferase-DNA interactions in solution.

S Klimasauskas 1, T Szyperski 1, S Serva 1, K Wüthrich 1
PMCID: PMC1170382  PMID: 9427765

Abstract

Flipping of a nucleotide out of a B-DNA helix into the active site of an enzyme has been observed for the HhaI and HaeIII cytosine-5 methyltransferases (M.HhaI and M.HaeIII) and for numerous DNA repair enzymes. Here we studied the base flipping motions in the binary M. HhaI-DNA and the ternary M.HhaI-DNA-cofactor systems in solution. Two 5-fluorocytosines were introduced into the DNA in the places of the target cytosine and, as an internal control, a cytosine positioned two nucleotides upstream of the recognition sequence 5'-GCGC-3'. The 19F NMR spectra combined with gel mobility data show that interaction with the enzyme induces partition of the target base among three states, i.e. stacked in the B-DNA, an ensemble of flipped-out forms and the flipped-out form locked in the enzyme active site. Addition of the cofactor analogue S-adenosyl-L-homocysteine greatly enhances the trapping of the target cytosine in the catalytic site. Distinct dynamic modes of the target cytosine have thus been identified along the reaction pathway, which includes novel base-flipping intermediates that were not observed in previous X-ray structures. The new data indicate that flipping of the target base out of the DNA helix is not dependent on binding of the cytosine in the catalytic pocket of M.HhaI, and suggest an active role of the enzyme in the opening of the DNA duplex.

Full Text

The Full Text of this article is available as a PDF (471.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bird A. P. The relationship of DNA methylation to cancer. Cancer Surv. 1996;28:87–101. [PubMed] [Google Scholar]
  2. Chen L., MacMillan A. M., Chang W., Ezaz-Nikpay K., Lane W. S., Verdine G. L. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry. 1991 Nov 19;30(46):11018–11025. doi: 10.1021/bi00110a002. [DOI] [PubMed] [Google Scholar]
  3. Cheng X., Blumenthal R. M. Finding a basis for flipping bases. Structure. 1996 Jun 15;4(6):639–645. doi: 10.1016/s0969-2126(96)00068-8. [DOI] [PubMed] [Google Scholar]
  4. Cheng X., Kumar S., Posfai J., Pflugrath J. W., Roberts R. J. Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell. 1993 Jul 30;74(2):299–307. doi: 10.1016/0092-8674(93)90421-l. [DOI] [PubMed] [Google Scholar]
  5. Guéron M., Leroy J. L. Studies of base pair kinetics by NMR measurement of proton exchange. Methods Enzymol. 1995;261:383–413. doi: 10.1016/s0076-6879(95)61018-9. [DOI] [PubMed] [Google Scholar]
  6. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb;14(1):33-8, 27-8. doi: 10.1016/0263-7855(96)00018-5. [DOI] [PubMed] [Google Scholar]
  7. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  8. Klimasauskas S., Kumar S., Roberts R. J., Cheng X. HhaI methyltransferase flips its target base out of the DNA helix. Cell. 1994 Jan 28;76(2):357–369. doi: 10.1016/0092-8674(94)90342-5. [DOI] [PubMed] [Google Scholar]
  9. Klimasauskas S., Roberts R. J. M.HhaI binds tightly to substrates containing mismatches at the target base. Nucleic Acids Res. 1995 Apr 25;23(8):1388–1395. doi: 10.1093/nar/23.8.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kumar S., Cheng X., Klimasauskas S., Mi S., Posfai J., Roberts R. J., Wilson G. G. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994 Jan 11;22(1):1–10. doi: 10.1093/nar/22.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kumar S., Cheng X., Pflugrath J. W., Roberts R. J. Purification, crystallization, and preliminary X-ray diffraction analysis of an M.HhaI-AdoMet complex. Biochemistry. 1992 Sep 15;31(36):8648–8653. doi: 10.1021/bi00151a035. [DOI] [PubMed] [Google Scholar]
  12. Maurer T, Kalbitzer HR. Indirect Referencing of 31P and 19F NMR Spectra. J Magn Reson B. 1996 Nov;113(2):177–178. doi: 10.1006/jmrb.1996.0172. [DOI] [PubMed] [Google Scholar]
  13. Metzler W. J., Lu P. Lambda cro repressor complex with OR3 operator DNA. 19F nuclear magnetic resonance observations. J Mol Biol. 1989 Jan 5;205(1):149–164. doi: 10.1016/0022-2836(89)90372-0. [DOI] [PubMed] [Google Scholar]
  14. Mi S., Alonso D., Roberts R. J. Functional analysis of Gln-237 mutants of HhaI methyltransferase. Nucleic Acids Res. 1995 Feb 25;23(4):620–627. doi: 10.1093/nar/23.4.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. O'Gara M., Klimasauskas S., Roberts R. J., Cheng X. Enzymatic C5-cytosine methylation of DNA: mechanistic implications of new crystal structures for HhaL methyltransferase-DNA-AdoHcy complexes. J Mol Biol. 1996 Sep 6;261(5):634–645. doi: 10.1006/jmbi.1996.0489. [DOI] [PubMed] [Google Scholar]
  16. O'Gara M., Roberts R. J., Cheng X. A structural basis for the preferential binding of hemimethylated DNA by HhaI DNA methyltransferase. J Mol Biol. 1996 Nov 8;263(4):597–606. doi: 10.1006/jmbi.1996.0601. [DOI] [PubMed] [Google Scholar]
  17. Ramstein J., Lavery R. Energetic coupling between DNA bending and base pair opening. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7231–7235. doi: 10.1073/pnas.85.19.7231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rastinejad F., Artz P., Lu P. Origin of the asymmetrical contact between lac repressor and lac operator DNA. J Mol Biol. 1993 Oct 5;233(3):389–399. doi: 10.1006/jmbi.1993.1519. [DOI] [PubMed] [Google Scholar]
  19. Rastinejad F., Evilia C., Lu P. Studies of nucleic acids and their protein interactions by 19F NMR. Methods Enzymol. 1995;261:560–575. doi: 10.1016/s0076-6879(95)61025-1. [DOI] [PubMed] [Google Scholar]
  20. Reinisch K. M., Chen L., Verdine G. L., Lipscomb W. N. The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell. 1995 Jul 14;82(1):143–153. doi: 10.1016/0092-8674(95)90060-8. [DOI] [PubMed] [Google Scholar]
  21. Roberts R. J. On base flipping. Cell. 1995 Jul 14;82(1):9–12. doi: 10.1016/0092-8674(95)90046-2. [DOI] [PubMed] [Google Scholar]
  22. Slupphaug G., Mol C. D., Kavli B., Arvai A. S., Krokan H. E., Tainer J. A. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature. 1996 Nov 7;384(6604):87–92. doi: 10.1038/384087a0. [DOI] [PubMed] [Google Scholar]
  23. Szyperski T., Luginbühl P., Otting G., Güntert P., Wüthrich K. Protein dynamics studied by rotating frame 15N spin relaxation times. J Biomol NMR. 1993 Mar;3(2):151–164. doi: 10.1007/BF00178259. [DOI] [PubMed] [Google Scholar]
  24. Vassylyev D. G., Morikawa K. DNA-repair enzymes. Curr Opin Struct Biol. 1997 Feb;7(1):103–109. doi: 10.1016/s0959-440x(97)80013-9. [DOI] [PubMed] [Google Scholar]
  25. Winkler F. K. DNA totally flipped-out by methylase. Structure. 1994 Feb 15;2(2):79–83. doi: 10.1016/s0969-2126(00)00009-5. [DOI] [PubMed] [Google Scholar]
  26. Wu J. C., Santi D. V. Kinetic and catalytic mechanism of HhaI methyltransferase. J Biol Chem. 1987 Apr 5;262(10):4778–4786. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES