Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jan 15;17(2):455–461. doi: 10.1093/emboj/17.2.455

Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1.

L Wikström 1, C Johansson 1, C Saltó 1, C Barlow 1, A Campos Barros 1, F Baas 1, D Forrest 1, P Thorén 1, B Vennström 1
PMCID: PMC1170396  PMID: 9430637

Abstract

Thyroid hormone, acting through several nuclear hormone receptors, plays important roles in thermogenesis, lipogenesis and maturation of the neonatal brain. The receptor specificity for mediating these effects is largely unknown, and to determine this we developed mice lacking the thyroid hormone receptor TR alpha 1. The mice have an average heart rate 20% lower than that of control animals, both under normal conditions and after thyroid hormone stimulation. Electrocardiograms show that the mice also have prolonged QRS- and QTend-durations. The mice have a body temperature 0.5 degrees C lower than normal and exhibit a mild hypothyroidism, whereas their overall behavior and reproduction are normal. The results identify specific and important roles for TR alpha 1 in regulation of tightly controlled physiological functions, such as cardiac pacemaking, ventricular repolarisation and control of body temperature.

Full Text

The Full Text of this article is available as a PDF (238.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DiFrancesco D. Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol. 1993;55:455–472. doi: 10.1146/annurev.ph.55.030193.002323. [DOI] [PubMed] [Google Scholar]
  2. Forrest D., Erway L. C., Ng L., Altschuler R., Curran T. Thyroid hormone receptor beta is essential for development of auditory function. Nat Genet. 1996 Jul;13(3):354–357. doi: 10.1038/ng0796-354. [DOI] [PubMed] [Google Scholar]
  3. Forrest D., Hanebuth E., Smeyne R. J., Everds N., Stewart C. L., Wehner J. M., Curran T. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. EMBO J. 1996 Jun 17;15(12):3006–3015. [PMC free article] [PubMed] [Google Scholar]
  4. Forrest D. The erbA/thyroid hormone receptor genes in development of the central nervous system. Semin Cancer Biol. 1994 Apr;5(2):167–176. [PubMed] [Google Scholar]
  5. Freake H. C., Oppenheimer J. H. Thermogenesis and thyroid function. Annu Rev Nutr. 1995;15:263–291. doi: 10.1146/annurev.nu.15.070195.001403. [DOI] [PubMed] [Google Scholar]
  6. Gerlai R. Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci. 1996 May;19(5):177–181. doi: 10.1016/s0166-2236(96)20020-7. [DOI] [PubMed] [Google Scholar]
  7. Gurr J. A., Kourides I. A. Ratios of alpha to beta TSH mRNA in normal and hypothyroid pituitaries and TSH-secreting tumors. Endocrinology. 1984 Aug;115(2):830–832. doi: 10.1210/endo-115-2-830. [DOI] [PubMed] [Google Scholar]
  8. Johansson C., Thorén P. The effects of triiodothyronine (T3) on heart rate, temperature and ECG measured with telemetry in freely moving mice. Acta Physiol Scand. 1997 Jun;160(2):133–138. doi: 10.1046/j.1365-201X.1997.00134.x. [DOI] [PubMed] [Google Scholar]
  9. Katz D., Reginato M. J., Lazar M. A. Functional regulation of thyroid hormone receptor variant TR alpha 2 by phosphorylation. Mol Cell Biol. 1995 May;15(5):2341–2348. doi: 10.1128/mcb.15.5.2341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koenig R. J., Lazar M. A., Hodin R. A., Brent G. A., Larsen P. R., Chin W. W., Moore D. D. Inhibition of thyroid hormone action by a non-hormone binding c-erbA protein generated by alternative mRNA splicing. Nature. 1989 Feb 16;337(6208):659–661. doi: 10.1038/337659a0. [DOI] [PubMed] [Google Scholar]
  11. Laird P. W., Zijderveld A., Linders K., Rudnicki M. A., Jaenisch R., Berns A. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 1991 Aug 11;19(15):4293–4293. doi: 10.1093/nar/19.15.4293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lazar M. A., Hodin R. A., Darling D. S., Chin W. W. A novel member of the thyroid/steroid hormone receptor family is encoded by the opposite strand of the rat c-erbA alpha transcriptional unit. Mol Cell Biol. 1989 Mar;9(3):1128–1136. doi: 10.1128/mcb.9.3.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lazar M. A., Hodin R. A., Darling D. S., Chin W. W. Identification of a rat c-erbA alpha-related protein which binds deoxyribonucleic acid but does not bind thyroid hormone. Mol Endocrinol. 1988 Oct;2(10):893–901. doi: 10.1210/mend-2-10-893. [DOI] [PubMed] [Google Scholar]
  14. Magyar C. E., Wang J., Azuma K. K., McDonough A. A. Reciprocal regulation of cardiac Na-K-ATPase and Na/Ca exchanger: hypertension, thyroid hormone, development. Am J Physiol. 1995 Sep;269(3 Pt 1):C675–C682. doi: 10.1152/ajpcell.1995.269.3.C675. [DOI] [PubMed] [Google Scholar]
  15. Mitsuhashi T., Tennyson G., Nikodem V. Nucleotide sequence of novel cDNAs generated by alternative splicing of a rat thyroid hormone receptor gene transcript. Nucleic Acids Res. 1988 Jun 24;16(12):5697–5697. doi: 10.1093/nar/16.12.5697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miyajima N., Horiuchi R., Shibuya Y., Fukushige S., Matsubara K., Toyoshima K., Yamamoto T. Two erbA homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus. Cell. 1989 Apr 7;57(1):31–39. doi: 10.1016/0092-8674(89)90169-4. [DOI] [PubMed] [Google Scholar]
  17. Müller W., Kühn R., Rajewsky K. Major histocompatibility complex class II hyperexpression on B cells in interleukin 4-transgenic mice does not lead to B cell proliferation and hypergammaglobulinemia. Eur J Immunol. 1991 Apr;21(4):921–925. doi: 10.1002/eji.1830210410. [DOI] [PubMed] [Google Scholar]
  18. Refetoff S., DeWind L. T., DeGroot L. J. Familial syndrome combining deaf-mutism, stuppled epiphyses, goiter and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J Clin Endocrinol Metab. 1967 Feb;27(2):279–294. doi: 10.1210/jcem-27-2-279. [DOI] [PubMed] [Google Scholar]
  19. Refetoff S. Resistance to thyroid hormone: an historical overview. Thyroid. 1994 Fall;4(3):345–349. doi: 10.1089/thy.1994.4.345. [DOI] [PubMed] [Google Scholar]
  20. Refetoff S., Weiss R. E., Usala S. J. The syndromes of resistance to thyroid hormone. Endocr Rev. 1993 Jun;14(3):348–399. doi: 10.1210/edrv-14-3-348. [DOI] [PubMed] [Google Scholar]
  21. Shimoni Y., Severson D. L. Thyroid status and potassium currents in rat ventricular myocytes. Am J Physiol. 1995 Feb;268(2 Pt 2):H576–H583. doi: 10.1152/ajpheart.1995.268.2.H576. [DOI] [PubMed] [Google Scholar]
  22. Silva J. E. Thyroid hormone control of thermogenesis and energy balance. Thyroid. 1995 Dec;5(6):481–492. doi: 10.1089/thy.1995.5.481. [DOI] [PubMed] [Google Scholar]
  23. Takeda K., Sakurai A., DeGroot L. J., Refetoff S. Recessive inheritance of thyroid hormone resistance caused by complete deletion of the protein-coding region of the thyroid hormone receptor-beta gene. J Clin Endocrinol Metab. 1992 Jan;74(1):49–55. doi: 10.1210/jcem.74.1.1727829. [DOI] [PubMed] [Google Scholar]
  24. Usala S. J., Menke J. B., Watson T. L., Wondisford F. E., Weintraub B. D., Bérard J., Bradley W. E., Ono S., Mueller O. T., Bercu B. B. A homozygous deletion in the c-erbA beta thyroid hormone receptor gene in a patient with generalized thyroid hormone resistance: isolation and characterization of the mutant receptor. Mol Endocrinol. 1991 Mar;5(3):327–335. doi: 10.1210/mend-5-3-327. [DOI] [PubMed] [Google Scholar]
  25. Warmke J. W., Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3438–3442. doi: 10.1073/pnas.91.8.3438. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES