Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jan 15;17(2):626–633. doi: 10.1093/emboj/17.2.626

A specific 3' exonuclease activity of UvrABC.

I Gordienko 1, W D Rupp 1
PMCID: PMC1170412  PMID: 9430653

Abstract

Specific cutting of undamaged DNA by UvrABC nuclease is observed. It occurs seven nucleotides (nt) from the 3' terminus of oligonucleotides annealed to single-stranded M13 DNA circles. Although the location of the UvrABC cut on undamaged DNA is similar to that of the cut on the 5' side of a damaged DNA site during the dual incision reaction, the cut of undamaged DNA is not an intermediate in the dual incision step. On DNA duplexes with a single AAF adduct, the anticipated cut at the eighth phosphodiester bond 5' of the lesion is present, but extra cuts at 7-nt increments are observed at the 15th and 22nd phosphodiester bonds. We suggest that these additional cuts are made by the UvrABC activity observed on undamaged DNA; such activity is referred to as ABC 3' exonuclease and may play a significant role by providing a suitable gap for RecA-mediated recombinational exchanges during repair of interstrand crosslinks and closely opposed lesions. This ABC 3' exonuclease activity depends on higher concentrations of Uvr proteins as compared with dual incision and may be relevant to reactions that occur when UvrA and UvrB are increased during SOS induction.

Full Text

The Full Text of this article is available as a PDF (242.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardwell A. J., Bardwell L., Tomkinson A. E., Friedberg E. C. Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. Science. 1994 Sep 30;265(5181):2082–2085. doi: 10.1126/science.8091230. [DOI] [PubMed] [Google Scholar]
  2. Bertrand-Burggraf E., Selby C. P., Hearst J. E., Sancar A. Identification of the different intermediates in the interaction of (A)BC excinuclease with its substrates by DNase I footprinting on two uniquely modified oligonucleotides. J Mol Biol. 1991 May 5;219(1):27–36. doi: 10.1016/0022-2836(91)90854-y. [DOI] [PubMed] [Google Scholar]
  3. Caron P. R., Grossman L. Incision of damaged versus nondamaged DNA by the Escherichia coli UvrABC proteins. Nucleic Acids Res. 1988 Aug 25;16(16):7855–7865. doi: 10.1093/nar/16.16.7855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caron P. R., Kushner S. R., Grossman L. Involvement of helicase II (uvrD gene product) and DNA polymerase I in excision mediated by the uvrABC protein complex. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4925–4929. doi: 10.1073/pnas.82.15.4925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheng S., Sancar A., Hearst J. E. RecA-dependent incision of psoralen-crosslinked DNA by (A)BC excinuclease. Nucleic Acids Res. 1991 Feb 11;19(3):657–663. doi: 10.1093/nar/19.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng S., Van Houten B., Gamper H. B., Sancar A., Hearst J. E. Use of psoralen-modified oligonucleotides to trap three-stranded RecA-DNA complexes and repair of these cross-linked complexes by ABC excinuclease. J Biol Chem. 1988 Oct 15;263(29):15110–15117. [PubMed] [Google Scholar]
  7. Cole R. S., Levitan D., Sinden R. R. Removal of psoralen interstrand cross-links from DNA of Escherichia coli: mechanism and genetic control. J Mol Biol. 1976 May 5;103(1):39–59. doi: 10.1016/0022-2836(76)90051-6. [DOI] [PubMed] [Google Scholar]
  8. Cole R. S. Repair of DNA containing interstrand crosslinks in Escherichia coli: sequential excision and recombination. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1064–1068. doi: 10.1073/pnas.70.4.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cooper P. K. Characterization of long patch excision repair of DNA in ultraviolet-irradiated Escherichia coli: an inducible function under rec-lex control. Mol Gen Genet. 1982;185(2):189–197. doi: 10.1007/BF00330785. [DOI] [PubMed] [Google Scholar]
  10. Cooper P. K., Hanawalt P. C. Role of DNA polymerase I and the rec system in excision-repair in Escherichia coli. Proc Natl Acad Sci U S A. 1972 May;69(5):1156–1160. doi: 10.1073/pnas.69.5.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davies A. A., Friedberg E. C., Tomkinson A. E., Wood R. D., West S. C. Role of the Rad1 and Rad10 proteins in nucleotide excision repair and recombination. J Biol Chem. 1995 Oct 20;270(42):24638–24641. doi: 10.1074/jbc.270.42.24638. [DOI] [PubMed] [Google Scholar]
  12. Evans E., Fellows J., Coffer A., Wood R. D. Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J. 1997 Feb 3;16(3):625–638. doi: 10.1093/emboj/16.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fogliano M., Schendel P. F. Evidence for the inducibility of the uvrB operon. Nature. 1981 Jan 15;289(5794):196–198. doi: 10.1038/289196a0. [DOI] [PubMed] [Google Scholar]
  14. Frenkel G. D., Richardson C. C. The deoxyribonuclease induced after infection of Escherichia coli by bacteriophage T5. I. Characterization of the enzyme as a 5'-exonuclease. J Biol Chem. 1971 Aug 10;246(15):4839–4847. [PubMed] [Google Scholar]
  15. Gordienko I., Rupp W. D. The limited strand-separating activity of the UvrAB protein complex and its role in the recognition of DNA damage. EMBO J. 1997 Feb 17;16(4):889–895. doi: 10.1093/emboj/16.4.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gordienko I., Rupp W. D. UvrAB activity at a damaged DNA site: is unpaired DNA present? EMBO J. 1997 Feb 17;16(4):880–888. doi: 10.1093/emboj/16.4.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Husain I., Van Houten B., Thomas D. C., Abdel-Monem M., Sancar A. Effect of DNA polymerase I and DNA helicase II on the turnover rate of UvrABC excision nuclease. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6774–6778. doi: 10.1073/pnas.82.20.6774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kenyon C. J., Walker G. C. DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Proc Natl Acad Sci U S A. 1980 May;77(5):2819–2823. doi: 10.1073/pnas.77.5.2819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kenyon C. J., Walker G. C. Expression of the E. coli uvrA gene is inducible. Nature. 1981 Feb 26;289(5800):808–810. doi: 10.1038/289808a0. [DOI] [PubMed] [Google Scholar]
  20. Kumura K., Sekiguchi M., Steinum A. L., Seeberg E. Stimulation of the UvrABC enzyme-catalyzed repair reactions by the UvrD protein (DNA helicase II). Nucleic Acids Res. 1985 Mar 11;13(5):1483–1492. doi: 10.1093/nar/13.5.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lam L. H., Reynolds R. J. A sensitive, enzymatic assay for the detection of closely opposed cyclobutyl pyrimidine dimers induced in human diploid fibroblasts. Mutat Res. 1986 Sep;166(2):187–198. doi: 10.1016/0167-8817(86)90017-9. [DOI] [PubMed] [Google Scholar]
  22. Lam L. H., Reynolds R. J. Bifilar enzyme-sensitive sites in ultraviolet-irradiated DNA are indicative of closely opposed cyclobutyl pyrimidine dimers. Biophys J. 1986 Aug;50(2):307–317. doi: 10.1016/S0006-3495(86)83464-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lam L. H., Reynolds R. J. DNA sequence dependence of closely opposed cyclobutyl pyrimidine dimers induced by UV radiation. Mutat Res. 1987 Jun;178(2):167–176. doi: 10.1016/0027-5107(87)90266-1. [DOI] [PubMed] [Google Scholar]
  24. Lin J. J., Phillips A. M., Hearst J. E., Sancar A. Active site of (A)BC excinuclease. II. Binding, bending, and catalysis mutants of UvrB reveal a direct role in 3' and an indirect role in 5' incision. J Biol Chem. 1992 Sep 5;267(25):17693–17700. [PubMed] [Google Scholar]
  25. Lin J. J., Sancar A. Active site of (A)BC excinuclease. I. Evidence for 5' incision by UvrC through a catalytic site involving Asp399, Asp438, Asp466, and His538 residues. J Biol Chem. 1992 Sep 5;267(25):17688–17692. [PubMed] [Google Scholar]
  26. Livneh Z., Cohen-Fix O., Skaliter R., Elizur T. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit Rev Biochem Mol Biol. 1993;28(6):465–513. doi: 10.3109/10409239309085136. [DOI] [PubMed] [Google Scholar]
  27. Minton K., Friedberg E. C. Letter: Evidence for clustering of pyrimidine dimers on opposite strands of U.V.-irradiated bacteriophage DNA. Int J Radiat Biol Relat Stud Phys Chem Med. 1974 Jul;26(1):81–85. doi: 10.1080/09553007414550981. [DOI] [PubMed] [Google Scholar]
  28. Moolenaar G. F., Franken K. L., Dijkstra D. M., Thomas-Oates J. E., Visse R., van de Putte P., Goosen N. The C-terminal region of the UvrB protein of Escherichia coli contains an important determinant for UvrC binding to the preincision complex but not the catalytic site for 3'-incision. J Biol Chem. 1995 Dec 22;270(51):30508–30515. doi: 10.1074/jbc.270.51.30508. [DOI] [PubMed] [Google Scholar]
  29. Moolenaar G. F., Visse R., Ortiz-Buysse M., Goosen N., van de Putte P. Helicase motifs V and VI of the Escherichia coli UvrB protein of the UvrABC endonuclease are essential for the formation of the preincision complex. J Mol Biol. 1994 Jul 22;240(4):294–307. doi: 10.1006/jmbi.1994.1447. [DOI] [PubMed] [Google Scholar]
  30. O'Donovan A., Davies A. A., Moggs J. G., West S. C., Wood R. D. XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair. Nature. 1994 Sep 29;371(6496):432–435. doi: 10.1038/371432a0. [DOI] [PubMed] [Google Scholar]
  31. Orren D. K., Selby C. P., Hearst J. E., Sancar A. Post-incision steps of nucleotide excision repair in Escherichia coli. Disassembly of the UvrBC-DNA complex by helicase II and DNA polymerase I. J Biol Chem. 1992 Jan 15;267(2):780–788. [PubMed] [Google Scholar]
  32. Rupp W. D., Gordienko I. UvrABC cutting at 3' recessed termini of undamaged DNA may be a model for 5' incision at damaged sites. Ann N Y Acad Sci. 1994 Jul 29;726:321–323. doi: 10.1111/j.1749-6632.1994.tb52839.x. [DOI] [PubMed] [Google Scholar]
  33. Sancar A. DNA excision repair. Annu Rev Biochem. 1996;65:43–81. doi: 10.1146/annurev.bi.65.070196.000355. [DOI] [PubMed] [Google Scholar]
  34. Sancar A., Rupp W. D. A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell. 1983 May;33(1):249–260. doi: 10.1016/0092-8674(83)90354-9. [DOI] [PubMed] [Google Scholar]
  35. Sancar A., Sancar G. B. DNA repair enzymes. Annu Rev Biochem. 1988;57:29–67. doi: 10.1146/annurev.bi.57.070188.000333. [DOI] [PubMed] [Google Scholar]
  36. Sladek F. M., Munn M. M., Rupp W. D., Howard-Flanders P. In vitro repair of psoralen-DNA cross-links by RecA, UvrABC, and the 5'-exonuclease of DNA polymerase I. J Biol Chem. 1989 Apr 25;264(12):6755–6765. [PubMed] [Google Scholar]
  37. Svoboda D. L., Smith C. A., Taylor J. S., Sancar A. Effect of sequence, adduct type, and opposing lesions on the binding and repair of ultraviolet photodamage by DNA photolyase and (A)BC excinuclease. J Biol Chem. 1993 May 15;268(14):10694–10700. [PubMed] [Google Scholar]
  38. Swenson P. A., Setlow R. B. Effects of ultraviolet radiation on macromolecular synthesis in Escherichia coli. J Mol Biol. 1966 Jan;15(1):201–219. doi: 10.1016/s0022-2836(66)80221-8. [DOI] [PubMed] [Google Scholar]
  39. Van Houten B., Gamper H., Hearst J. E., Sancar A. Analysis of sequential steps of nucleotide excision repair in Escherichia coli using synthetic substrates containing single psoralen adducts. J Biol Chem. 1988 Nov 15;263(32):16553–16560. [PubMed] [Google Scholar]
  40. Van Houten B., Gamper H., Hearst J. E., Sancar A. Construction of DNA substrates modified with psoralen at a unique site and study of the action mechanism of ABC excinuclease on these uniformly modified substrates. J Biol Chem. 1986 Oct 25;261(30):14135–14141. [PubMed] [Google Scholar]
  41. Van Houten B., Gamper H., Holbrook S. R., Hearst J. E., Sancar A. Action mechanism of ABC excision nuclease on a DNA substrate containing a psoralen crosslink at a defined position. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8077–8081. doi: 10.1073/pnas.83.21.8077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Van Houten B., Gamper H., Sancar A., Hearst J. E. DNase I footprint of ABC excinuclease. J Biol Chem. 1987 Sep 25;262(27):13180–13187. [PubMed] [Google Scholar]
  43. Van Houten B. Nucleotide excision repair in Escherichia coli. Microbiol Rev. 1990 Mar;54(1):18–51. doi: 10.1128/mr.54.1.18-51.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Van Houten B., Snowden A. Mechanism of action of the Escherichia coli UvrABC nuclease: clues to the damage recognition problem. Bioessays. 1993 Jan;15(1):51–59. doi: 10.1002/bies.950150108. [DOI] [PubMed] [Google Scholar]
  45. Visse R., King A., Moolenaar G. F., Goosen N., van de Putte P. Protein-DNA interactions and alterations in the DNA structure upon UvrB-DNA preincision complex formation during nucleotide excision repair in Escherichia coli. Biochemistry. 1994 Aug 23;33(33):9881–9888. doi: 10.1021/bi00199a009. [DOI] [PubMed] [Google Scholar]
  46. Visse R., de Ruijter M., Brouwer J., Brandsma J. A., van de Putte P. Uvr excision repair protein complex of Escherichia coli binds to the convex side of a cisplatin-induced kink in the DNA. J Biol Chem. 1991 Apr 25;266(12):7609–7617. [PubMed] [Google Scholar]
  47. Visse R., de Ruijter M., Moolenaar G. F., van de Putte P. Analysis of UvrABC endonuclease reaction intermediates on cisplatin-damaged DNA using mobility shift gel electrophoresis. J Biol Chem. 1992 Apr 5;267(10):6736–6742. [PubMed] [Google Scholar]
  48. Visse R., van Gool A. J., Moolenaar G. F., de Ruijter M., van de Putte P. The actual incision determines the efficiency of repair of cisplatin-damaged DNA by the Escherichia coli UvrABC endonuclease. Biochemistry. 1994 Feb 22;33(7):1804–1811. doi: 10.1021/bi00173a025. [DOI] [PubMed] [Google Scholar]
  49. Yeung A. T., Mattes W. B., Grossman L. Protein complexes formed during the incision reaction catalyzed by the Escherichia coli UvrABC endonuclease. Nucleic Acids Res. 1986 Mar 25;14(6):2567–2582. doi: 10.1093/nar/14.6.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yeung A. T., Mattes W. B., Oh E. Y., Grossman L. Enzymatic properties of purified Escherichia coli uvrABC proteins. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6157–6161. doi: 10.1073/pnas.80.20.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yeung A. T., Mattes W. B., Oh E. Y., Yoakum G. H., Grossman L. The purification of the Escherichia coli UvrABC incision system. Nucleic Acids Res. 1986 Nov 11;14(21):8535–8556. doi: 10.1093/nar/14.21.8535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zou Y., Walker R., Bassett H., Geacintov N. E., Van Houten B. Formation of DNA repair intermediates and incision by the ATP-dependent UvrB-UvrC endonuclease. J Biol Chem. 1997 Feb 21;272(8):4820–4827. doi: 10.1074/jbc.272.8.4820. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES