Abstract
We have recently isolated a mutant (aK220R, aV264E, aI278N) of the Na+-translocating Escherichia coli/Propionigenium modestum ATPase hybrid with a Na+-inhibited growth phenotype on succinate. ATP hydrolysis by the reconstituted mutant ATPase was inhibited by external (N side) NaCl but not by internal (P side) NaCl. In contrast, LiCl activated the ATPase from the N side and inhibited it from the P side. A similar pattern of activation and inhibition was observed with NaCl and the ATPase from the parent strain PEF42. We conclude from these results that the binding sites for the coupling ions on the c subunits are freely accessible from the N side. Upon occupation of these sites, the ATPase becomes more active, provided that the ions can be further translocated to the P side through a channel of the a subunit. If by mutation of the a subunit this channel becomes impermeable for Na+, N side Na+ ions specifically inhibit the ATPase activity. These conclusions were corroborated by the observation that proton transport into proteoliposomes containing the mutant ATPase was abolished by N side but not by P side Na+ ions. In contrast, LiCl affected proton translocation from either side, similar to the sidedness effect of Na+ ions on H+ transport by the parent hybrid ATPase. If the ATPase carrying the mutated a subunit was incubated with 22NaCl and ATP, 1 mol 22Na+/mol enzyme was occluded. With the parent hybrid ATPase, 22Na+ occlusion was not observed. The occluded 22Na+ could be removed from its tight binding site by 20 mM LiCl, while incubation with 20 mM NaCl was without effect. Li+ but not Na+ is therefore apparently able to pass through the mutated a subunit and make the entrapped Na+ ions accessible again to the aqueous environment. These results suggest an ion translocation mechanism through F0 that in the ATP hydrolysis mode involves binding of the coupling ions from the cytoplasm to the multiple c subunits, ATP-driven rotation to bring a Na+, Li+, or H+-loaded c subunit into a contact site with the a subunit and release of the coupling ions through the a subunit channel to the periplasmic surface of the membrane.
Full Text
The Full Text of this article is available as a PDF (402.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
- Birkenhäger R., Hoppert M., Deckers-Hebestreit G., Mayer F., Altendorf K. The F0 complex of the Escherichia coli ATP synthase. Investigation by electron spectroscopic imaging and immunoelectron microscopy. Eur J Biochem. 1995 May 15;230(1):58–67. [PubMed] [Google Scholar]
- Boyer P. D. The binding change mechanism for ATP synthase--some probabilities and possibilities. Biochim Biophys Acta. 1993 Jan 8;1140(3):215–250. doi: 10.1016/0005-2728(93)90063-l. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cain B. D., Simoni R. D. Impaired proton conductivity resulting from mutations in the a subunit of F1F0 ATPase in Escherichia coli. J Biol Chem. 1986 Aug 5;261(22):10043–10050. [PubMed] [Google Scholar]
- Cain B. D., Simoni R. D. Interaction between Glu-219 and His-245 within the a subunit of F1F0-ATPase in Escherichia coli. J Biol Chem. 1988 May 15;263(14):6606–6612. [PubMed] [Google Scholar]
- Deckers-Hebestreit G., Altendorf K. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex. Annu Rev Microbiol. 1996;50:791–824. doi: 10.1146/annurev.micro.50.1.791. [DOI] [PubMed] [Google Scholar]
- Dimroth P. Primary sodium ion translocating enzymes. Biochim Biophys Acta. 1997 Jan 16;1318(1-2):11–51. doi: 10.1016/s0005-2728(96)00127-2. [DOI] [PubMed] [Google Scholar]
- Duncan T. M., Bulygin V. V., Zhou Y., Hutcheon M. L., Cross R. L. Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10964–10968. doi: 10.1073/pnas.92.24.10964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Futai M., Noumi T., Maeda M. ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. Annu Rev Biochem. 1989;58:111–136. doi: 10.1146/annurev.bi.58.070189.000551. [DOI] [PubMed] [Google Scholar]
- Girvin M. E., Fillingame R. H. Determination of local protein structure by spin label difference 2D NMR: the region neighboring Asp61 of subunit c of the F1F0 ATP synthase. Biochemistry. 1995 Feb 7;34(5):1635–1645. doi: 10.1021/bi00005a020. [DOI] [PubMed] [Google Scholar]
- Girvin M. E., Fillingame R. H. Hairpin folding of subunit c of F1Fo ATP synthase: 1H distance measurements to nitroxide-derivatized aspartyl-61. Biochemistry. 1994 Jan 25;33(3):665–674. doi: 10.1021/bi00169a006. [DOI] [PubMed] [Google Scholar]
- Junge W., Lill H., Engelbrecht S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci. 1997 Nov;22(11):420–423. doi: 10.1016/s0968-0004(97)01129-8. [DOI] [PubMed] [Google Scholar]
- Kaim G., Dimroth P. A double mutation in subunit c of the Na(+)-specific F1F0-ATPase of Propionigenium modestum results in a switch from Na+ to H(+)-coupled ATP synthesis in the Escherichia coli host cells. J Mol Biol. 1995 Nov 10;253(5):726–738. doi: 10.1006/jmbi.1995.0586. [DOI] [PubMed] [Google Scholar]
- Kaim G., Dimroth P. Construction, expression and characterization of a plasmid-encoded Na(+)-specific ATPase hybrid consisting of Propionigenium modestum F0-ATPase and Escherichia coli F1-ATPase. Eur J Biochem. 1994 Jun 1;222(2):615–623. doi: 10.1111/j.1432-1033.1994.tb18904.x. [DOI] [PubMed] [Google Scholar]
- Kaim G., Dimroth P. Formation of a functionally active sodium-translocating hybrid F1F0 ATPase in Escherichia coli by homologous recombination. Eur J Biochem. 1993 Dec 15;218(3):937–944. doi: 10.1111/j.1432-1033.1993.tb18450.x. [DOI] [PubMed] [Google Scholar]
- Kaim G., Wehrle F., Gerike U., Dimroth P. Molecular basis for the coupling ion selectivity of F1F0 ATP synthases: probing the liganding groups for Na+ and Li+ in the c subunit of the ATP synthase from Propionigenium modestum. Biochemistry. 1997 Jul 29;36(30):9185–9194. doi: 10.1021/bi970831q. [DOI] [PubMed] [Google Scholar]
- Kluge C., Dimroth P. Kinetics of inactivation of the F1Fo ATPase of Propionigenium modestum by dicyclohexylcarbodiimide in relationship to H+ and Na+ concentration: probing the binding site for the coupling ions. Biochemistry. 1993 Oct 5;32(39):10378–10386. doi: 10.1021/bi00090a013. [DOI] [PubMed] [Google Scholar]
- Kluge C., Dimroth P. Studies on Na+ and H+ translocation through the Fo part of the Na(+)-translocating F1Fo ATPase from Propionigenium modestum: discovery of a membrane potential dependent step. Biochemistry. 1992 Dec 22;31(50):12665–12672. doi: 10.1021/bi00165a017. [DOI] [PubMed] [Google Scholar]
- Laubinger W., Dimroth P. Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump. Biochemistry. 1988 Sep 20;27(19):7531–7537. doi: 10.1021/bi00419a053. [DOI] [PubMed] [Google Scholar]
- Laubinger W., Dimroth P. Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an enzyme of the F1F0 type. Eur J Biochem. 1987 Oct 15;168(2):475–480. doi: 10.1111/j.1432-1033.1987.tb13441.x. [DOI] [PubMed] [Google Scholar]
- Laubinger W., Dimroth P. The sodium ion translocating adenosinetriphosphatase of Propionigenium modestum pumps protons at low sodium ion concentrations. Biochemistry. 1989 Sep 5;28(18):7194–7198. doi: 10.1021/bi00444a010. [DOI] [PubMed] [Google Scholar]
- Noji H., Yasuda R., Yoshida M., Kinosita K., Jr Direct observation of the rotation of F1-ATPase. Nature. 1997 Mar 20;386(6622):299–302. doi: 10.1038/386299a0. [DOI] [PubMed] [Google Scholar]
- Sabbert D., Engelbrecht S., Junge W. Intersubunit rotation in active F-ATPase. Nature. 1996 Jun 13;381(6583):623–625. doi: 10.1038/381623a0. [DOI] [PubMed] [Google Scholar]
- Singh S., Turina P., Bustamante C. J., Keller D. J., Capaldi R. Topographical structure of membrane-bound Escherichia coli F1F0 ATP synthase in aqueous buffer. FEBS Lett. 1996 Nov 11;397(1):30–34. doi: 10.1016/s0014-5793(96)01127-1. [DOI] [PubMed] [Google Scholar]
- Steffens K., Hoppe J., Altendorf K. F0 part of the ATP synthase from Escherichia coli. Influence of subunits a, and b, on the structure of subunit c. Eur J Biochem. 1988 Jan 4;170(3):627–630. doi: 10.1111/j.1432-1033.1988.tb13743.x. [DOI] [PubMed] [Google Scholar]
- Takeyasu K., Omote H., Nettikadan S., Tokumasu F., Iwamoto-Kihara A., Futai M. Molecular imaging of Escherichia coli F0F1-ATPase in reconstituted membranes using atomic force microscopy. FEBS Lett. 1996 Aug 26;392(2):110–113. doi: 10.1016/0014-5793(96)00796-x. [DOI] [PubMed] [Google Scholar]
- Vik S. B., Antonio B. J. A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. J Biol Chem. 1994 Dec 2;269(48):30364–30369. [PubMed] [Google Scholar]
- Weber J., Senior A. E. Catalytic mechanism of F1-ATPase. Biochim Biophys Acta. 1997 Mar 28;1319(1):19–58. doi: 10.1016/s0005-2728(96)00121-1. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Fillingame R. H. Changing the ion binding specificity of the Escherichia coli H(+)-transporting ATP synthase by directed mutagenesis of subunit c. J Biol Chem. 1995 Jan 6;270(1):87–93. doi: 10.1074/jbc.270.1.87. [DOI] [PubMed] [Google Scholar]