Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Feb 16;17(4):886–897. doi: 10.1093/emboj/17.4.886

Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50,488H and attenuates morphine withdrawal.

F Simonin 1, O Valverde 1, C Smadja 1, S Slowe 1, I Kitchen 1, A Dierich 1, M Le Meur 1, B P Roques 1, R Maldonado 1, B L Kieffer 1
PMCID: PMC1170438  PMID: 9463367

Abstract

***micro***-, delta- and kappa-opioid receptors are widely expressed in the central nervous system where they mediate the strong analgesic and mood-altering actions of opioids, and modulate numerous endogenous functions. To investigate the contribution of the kappa-opioid receptor (KOR) to opioid function in vivo, we have generated KOR-deficient mice by gene targeting. We show that absence of KOR does not modify expression of the other components of the opioid system, and behavioural tests indicate that spontaneous activity is not altered in mutant mice. The analysis of responses to various nociceptive stimuli suggests that the KOR gene product is implicated in the perception of visceral chemical pain. We further demonstrate that KOR is critical to mediate the hypolocomotor, analgesic and aversive actions of the prototypic kappa-agonist U-50, 488H. Finally, our results indicate that this receptor does not contribute to morphine analgesia and reward, but participates in the expression of morphine abstinence. Together, our data demonstrate that the KOR-encoded receptor plays a modulatory role in specific aspects of opioid function.

Full Text

The Full Text of this article is available as a PDF (636.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akil H., Watson S. J., Young E., Lewis M. E., Khachaturian H., Walker J. M. Endogenous opioids: biology and function. Annu Rev Neurosci. 1984;7:223–255. doi: 10.1146/annurev.ne.07.030184.001255. [DOI] [PubMed] [Google Scholar]
  2. Ashton N., Balment R. J., Blackburn T. P. Kappa-opioid-induced changes in renal water and electrolyte management and endocrine secretion. Br J Pharmacol. 1989 Jul;97(3):769–776. doi: 10.1111/j.1476-5381.1989.tb12015.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhargava H. N. Diversity of agents that modify opioid tolerance, physical dependence, abstinence syndrome, and self-administrative behavior. Pharmacol Rev. 1994 Sep;46(3):293–324. [PubMed] [Google Scholar]
  4. Brownstein M. J. A brief history of opiates, opioid peptides, and opioid receptors. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5391–5393. doi: 10.1073/pnas.90.12.5391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Capecchi M. R. Altering the genome by homologous recombination. Science. 1989 Jun 16;244(4910):1288–1292. doi: 10.1126/science.2660260. [DOI] [PubMed] [Google Scholar]
  6. Cowan A., Zhu X. Z., Mosberg H. I., Omnaas J. R., Porreca F. Direct dependence studies in rats with agents selective for different types of opioid receptor. J Pharmacol Exp Ther. 1988 Sep;246(3):950–955. [PubMed] [Google Scholar]
  7. Dhawan B. N., Cesselin F., Raghubir R., Reisine T., Bradley P. B., Portoghese P. S., Hamon M. International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol Rev. 1996 Dec;48(4):567–592. [PubMed] [Google Scholar]
  8. Di Chiara G., North R. A. Neurobiology of opiate abuse. Trends Pharmacol Sci. 1992 May;13(5):185–193. doi: 10.1016/0165-6147(92)90062-b. [DOI] [PubMed] [Google Scholar]
  9. Dickenson A. H. Mechanisms of the analgesic actions of opiates and opioids. Br Med Bull. 1991 Jul;47(3):690–702. doi: 10.1093/oxfordjournals.bmb.a072501. [DOI] [PubMed] [Google Scholar]
  10. EDDY N. B., LEIMBACH D. Synthetic analgesics. II. Dithienylbutenyl- and dithienylbutylamines. J Pharmacol Exp Ther. 1953 Mar;107(3):385–393. [PubMed] [Google Scholar]
  11. Funada M., Suzuki T., Narita M., Misawa M., Nagase H. Blockade of morphine reward through the activation of kappa-opioid receptors in mice. Neuropharmacology. 1993 Dec;32(12):1315–1323. doi: 10.1016/0028-3908(93)90026-y. [DOI] [PubMed] [Google Scholar]
  12. Goldstein A., Naidu A. Multiple opioid receptors: ligand selectivity profiles and binding site signatures. Mol Pharmacol. 1989 Aug;36(2):265–272. [PubMed] [Google Scholar]
  13. Hunskaar S., Fasmer O. B., Hole K. Formalin test in mice, a useful technique for evaluating mild analgesics. J Neurosci Methods. 1985 Jun;14(1):69–76. doi: 10.1016/0165-0270(85)90116-5. [DOI] [PubMed] [Google Scholar]
  14. Hunter J. C., Leighton G. E., Meecham K. G., Boyle S. J., Horwell D. C., Rees D. C., Hughes J. CI-977, a novel and selective agonist for the kappa-opioid receptor. Br J Pharmacol. 1990 Sep;101(1):183–189. doi: 10.1111/j.1476-5381.1990.tb12110.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ilien B., Galzi J. L., Mejean A., Goeldner M., Hirth C. A mu-opioid receptor-filter assay. Rapid estimation of binding affinity of ligands and reversibility of long-lasting ligand-receptor complexes. Biochem Pharmacol. 1988 Oct 15;37(20):3843–3851. doi: 10.1016/0006-2952(88)90065-2. [DOI] [PubMed] [Google Scholar]
  16. Kieffer B. L., Befort K., Gaveriaux-Ruff C., Hirth C. G. The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12048–12052. doi: 10.1073/pnas.89.24.12048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kieffer B. L. Recent advances in molecular recognition and signal transduction of active peptides: receptors for opioid peptides. Cell Mol Neurobiol. 1995 Dec;15(6):615–635. doi: 10.1007/BF02071128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kitchen I., Leslie F. M., Kelly M., Barnes R., Crook T. J., Hill R. G., Borsodi A., Toth G., Melchiorri P., Negri L. Development of delta-opioid receptor subtypes and the regulatory role of weaning: radioligand binding, autoradiography and in situ hybridization studies. J Pharmacol Exp Ther. 1995 Dec;275(3):1597–1607. [PubMed] [Google Scholar]
  19. Kitchen I., Slowe S. J., Matthes H. W., Kieffer B. Quantitative autoradiographic mapping of mu-, delta- and kappa-opioid receptors in knockout mice lacking the mu-opioid receptor gene. Brain Res. 1997 Dec 5;778(1):73–88. doi: 10.1016/s0006-8993(97)00988-8. [DOI] [PubMed] [Google Scholar]
  20. Koob G. F. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992 May;13(5):177–184. doi: 10.1016/0165-6147(92)90060-j. [DOI] [PubMed] [Google Scholar]
  21. König M., Zimmer A. M., Steiner H., Holmes P. V., Crawley J. N., Brownstein M. J., Zimmer A. Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature. 1996 Oct 10;383(6600):535–538. doi: 10.1038/383535a0. [DOI] [PubMed] [Google Scholar]
  22. Lahti R. A., VonVoigtlander P. F., Barsuhn C. Properties of a selective kappa agonist, U-50,488H. Life Sci. 1982 Nov 15;31(20-21):2257–2260. doi: 10.1016/0024-3205(82)90132-1. [DOI] [PubMed] [Google Scholar]
  23. Locke K. W., Holtzman S. G. Behavioral effects of opioid peptides selective for mu or delta receptors. II. Locomotor activity in nondependent and morphine-dependent rats. J Pharmacol Exp Ther. 1986 Sep;238(3):997–1003. [PubMed] [Google Scholar]
  24. Lufkin T., Dierich A., LeMeur M., Mark M., Chambon P. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell. 1991 Sep 20;66(6):1105–1119. doi: 10.1016/0092-8674(91)90034-v. [DOI] [PubMed] [Google Scholar]
  25. Maldonado R., Blendy J. A., Tzavara E., Gass P., Roques B. P., Hanoune J., Schütz G. Reduction of morphine abstinence in mice with a mutation in the gene encoding CREB. Science. 1996 Aug 2;273(5275):657–659. doi: 10.1126/science.273.5275.657. [DOI] [PubMed] [Google Scholar]
  26. Maldonado R., Negus S., Koob G. F. Precipitation of morphine withdrawal syndrome in rats by administration of mu-, delta- and kappa-selective opioid antagonists. Neuropharmacology. 1992 Dec;31(12):1231–1241. doi: 10.1016/0028-3908(92)90051-p. [DOI] [PubMed] [Google Scholar]
  27. Mansour A., Fox C. A., Akil H., Watson S. J. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci. 1995 Jan;18(1):22–29. doi: 10.1016/0166-2236(95)93946-u. [DOI] [PubMed] [Google Scholar]
  28. Matthes H. W., Maldonado R., Simonin F., Valverde O., Slowe S., Kitchen I., Befort K., Dierich A., Le Meur M., Dollé P. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature. 1996 Oct 31;383(6603):819–823. doi: 10.1038/383819a0. [DOI] [PubMed] [Google Scholar]
  29. Millan M. J. Kappa-opioid receptors and analgesia. Trends Pharmacol Sci. 1990 Feb;11(2):70–76. doi: 10.1016/0165-6147(90)90321-x. [DOI] [PubMed] [Google Scholar]
  30. Mucha R. F., Herz A. Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology (Berl) 1985;86(3):274–280. doi: 10.1007/BF00432213. [DOI] [PubMed] [Google Scholar]
  31. Murray C. W., Cowan A. [D-Pen2, D-Pen5]enkephalin, the standard delta opioid agonist, induces morphine-like behaviors in mice. Psychopharmacology (Berl) 1990;102(3):425–426. doi: 10.1007/BF02244117. [DOI] [PubMed] [Google Scholar]
  32. Olson G. A., Olson R. D., Kastin A. J. Endogenous opiates: 1995. Peptides. 1996;17(8):1421–1466. doi: 10.1016/s0196-9781(96)00225-2. [DOI] [PubMed] [Google Scholar]
  33. Pasternak G. W. Pharmacological mechanisms of opioid analgesics. Clin Neuropharmacol. 1993 Feb;16(1):1–18. doi: 10.1097/00002826-199302000-00001. [DOI] [PubMed] [Google Scholar]
  34. Pfeiffer A., Brantl V., Herz A., Emrich H. M. Psychotomimesis mediated by kappa opiate receptors. Science. 1986 Aug 15;233(4765):774–776. doi: 10.1126/science.3016896. [DOI] [PubMed] [Google Scholar]
  35. RANDALL L. O., SELITTO J. J. A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther. 1957 Sep 1;111(4):409–419. [PubMed] [Google Scholar]
  36. Richardson A., Demoliou-Mason C., Barnard E. A. Guanine nucleotide-binding protein-coupled and -uncoupled states of opioid receptors and their relevance to the determination of subtypes. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10198–10202. doi: 10.1073/pnas.89.21.10198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Robson L. E., Gillan M. G., Kosterlitz H. W. Species differences in the concentrations and distributions of opioid binding sites. Eur J Pharmacol. 1985 May 28;112(1):65–71. doi: 10.1016/0014-2999(85)90239-0. [DOI] [PubMed] [Google Scholar]
  38. Roques B. P., Noble F., Daugé V., Fournié-Zaluski M. C., Beaumont A. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev. 1993 Mar;45(1):87–146. [PubMed] [Google Scholar]
  39. Rossier J. Opioid peptides have found their roots. Nature. 1982 Jul 15;298(5871):221–222. doi: 10.1038/298221a0. [DOI] [PubMed] [Google Scholar]
  40. Rubinstein M., Mogil J. S., Japón M., Chan E. C., Allen R. G., Low M. J. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3995–4000. doi: 10.1073/pnas.93.9.3995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schmauss C., Yaksh T. L., Shimohigashi Y., Harty G., Jensen T., Rodbard D. Differential association of spinal mu, delta and kappa opioid receptors with cutaneous thermal and visceral chemical nociceptive stimuli in the rat. Life Sci. 1983;33 (Suppl 1):653–656. doi: 10.1016/0024-3205(83)90587-8. [DOI] [PubMed] [Google Scholar]
  42. Schug S. A., Zech D., Grond S. Adverse effects of systemic opioid analgesics. Drug Saf. 1992 May-Jun;7(3):200–213. doi: 10.2165/00002018-199207030-00005. [DOI] [PubMed] [Google Scholar]
  43. Shippenberg T. S., Bals-Kubik R., Herz A. Motivational properties of opioids: evidence that an activation of delta-receptors mediates reinforcement processes. Brain Res. 1987 Dec 15;436(2):234–239. doi: 10.1016/0006-8993(87)91667-2. [DOI] [PubMed] [Google Scholar]
  44. Sora I., Takahashi N., Funada M., Ujike H., Revay R. S., Donovan D. M., Miner L. L., Uhl G. R. Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1544–1549. doi: 10.1073/pnas.94.4.1544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Spanagel R., Herz A., Shippenberg T. S. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2046–2050. doi: 10.1073/pnas.89.6.2046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Takemori A. E., Portoghese P. S. Evidence for the interaction of morphine with kappa and delta opioid receptors to induce analgesia in beta-funaltrexamine-treated mice. J Pharmacol Exp Ther. 1987 Oct;243(1):91–94. [PubMed] [Google Scholar]
  47. Tao P. L., Hwang C. L., Chen C. Y. U-50,488 blocks the development of morphine tolerance and dependence at a very low dose in guinea pigs. Eur J Pharmacol. 1994 May 2;256(3):281–286. doi: 10.1016/0014-2999(94)90553-3. [DOI] [PubMed] [Google Scholar]
  48. Tian M., Broxmeyer H. E., Fan Y., Lai Z., Zhang S., Aronica S., Cooper S., Bigsby R. M., Steinmetz R., Engle S. J. Altered hematopoiesis, behavior, and sexual function in mu opioid receptor-deficient mice. J Exp Med. 1997 Apr 21;185(8):1517–1522. doi: 10.1084/jem.185.8.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tortella F. C., Echevarria E., Lipkowski A. W., Takemori A. E., Portoghese P. S., Holaday J. W. Selective kappa antagonist properties of nor-binaltorphimine in the rat MES seizure model. Life Sci. 1989;44(10):661–665. doi: 10.1016/0024-3205(89)90470-0. [DOI] [PubMed] [Google Scholar]
  50. Traynor J. Subtypes of the kappa-opioid receptor: fact or fiction? Trends Pharmacol Sci. 1989 Feb;10(2):52–53. doi: 10.1016/0165-6147(89)90074-6. [DOI] [PubMed] [Google Scholar]
  51. Tyers M. B. A classification of opiate receptors that mediate antinociception in animals. Br J Pharmacol. 1980 Jul;69(3):503–512. doi: 10.1111/j.1476-5381.1980.tb07041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Unterwald E. M., Knapp C., Zukin R. S. Neuroanatomical localization of kappa 1 and kappa 2 opioid receptors in rat and guinea pig brain. Brain Res. 1991 Oct 18;562(1):57–65. doi: 10.1016/0006-8993(91)91186-5. [DOI] [PubMed] [Google Scholar]
  53. Valverde O., Fournie-Zaluski M. C., Roques B. P., Maldonado R. The CCKB antagonist PD-134,308 facilitates rewarding effects of endogenous enkephalins but does not induce place preference in rats. Psychopharmacology (Berl) 1996 Jan;123(2):119–126. doi: 10.1007/BF02246168. [DOI] [PubMed] [Google Scholar]
  54. Vonvoigtlander P. F., Lahti R. A., Ludens J. H. U-50,488: a selective and structurally novel non-Mu (kappa) opioid agonist. J Pharmacol Exp Ther. 1983 Jan;224(1):7–12. [PubMed] [Google Scholar]
  55. Waksman G., Hamel E., Fournié-Zaluski M. C., Roques B. P. Autoradiographic comparison of the distribution of the neutral endopeptidase "enkephalinase" and of mu and delta opioid receptors in rat brain. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1523–1527. doi: 10.1073/pnas.83.5.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Ward S. J., Takemori A. E. Relative involvement of mu, kappa and delta receptor mechanisms in opiate-mediated antinociception in mice. J Pharmacol Exp Ther. 1983 Mar;224(3):525–530. [PubMed] [Google Scholar]
  57. Zadina J. E., Hackler L., Ge L. J., Kastin A. J. A potent and selective endogenous agonist for the mu-opiate receptor. Nature. 1997 Apr 3;386(6624):499–502. doi: 10.1038/386499a0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES