Skip to main content
Biomolecules & Therapeutics logoLink to Biomolecules & Therapeutics
. 2024 Dec 16;33(1):54–74. doi: 10.4062/biomolther.2024.215

Probiotics as Potential Treatments for Neurodegenerative Diseases: a Review of the Evidence from in vivo to Clinical Trial

Jin Hee Kim 1, Yujin Choi 1, Seungmin Lee 1, Myung Sook Oh 1,2,*
PMCID: PMC11704393  PMID: 39676295

Abstract

Neurodegenerative diseases (NDDs), characterized by the progressive deterioration of the structure and function of the nervous system, represent a significant global health challenge. Emerging research suggests that the gut microbiota plays a critical role in regulating neurodegeneration via modulation of the gut-brain axis. Probiotics, defined as live microorganisms that confer health benefits to the host, have garnered significant attention owing to their therapeutic potential in NDDs. This review examines the current research trends related to the microbiome-gut-brain axis across various NDDs, highlighting key findings and their implications. Additionally, the effects of specific probiotic strains, including Lactobacillus plantarum, Bifidobacterium breve, and Lactobacillus rhamnosus, on neurodegenerative processes were assessed, focusing on their potential therapeutic benefits. Overall, this review emphasizes the potential of probiotics as promising therapeutic agents for NDDs, underscoring the importance of further investigation into this emerging field.

Keywords: Probiotics, Neurodegenerative diseases, Microbiota-gut-brain axis

INTRODUCTION

Neurodegenerative diseases (NDD) are characterized by the progressive degeneration and death of neurons, resulting in cognitive decline, motor dysfunction, and behavioral changes (Kim and Joh, 2012; Heemels, 2016). Representative NDDs include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). Although NDDs share common pathological features, such as protein aggregation, oxidative stress, and neuroinflammation, their exact underlying mechanisms have not been elucidated due to their significant complexity (Gupta et al., 2023; Gadhave et al., 2024). The prevalence of NDDs has increased significantly with the aging of the global population, highlighting the urgent need for a clearer understanding of their underlying mechanisms and the development of effective treatments (Ding et al., 2022; Huang et al., 2023).

Recent studies on the pathogenesis of NDDs have resulted in the development of diverse therapeutic strategies (Kostrzewa and Segura-Aguilar, 2003; Dar et al., 2020). While initial approaches focused on small-molecule drugs and immunotherapy, recent efforts have expanded to include innovative techniques, such as gene therapy (Sapko et al., 2022; Mead et al., 2023; Van de Roovaart et al., 2023; McFarthing et al., 2024). Notably, there is growing interest in systemic factors beyond the central nervous system (CNS), with increasing evidence supporting interactions along the microbiota-gut-brain (MGB) axis in the context of NDDs (Quigley, 2017; Mou et al., 2022). These studies have suggested the existence of a significant link between gut health and neurodegeneration, opening up new therapeutic possibilities, including the potential use of probiotics and other gut-targeting interventions.

Probiotics are defined by the FAO and WHO as “live microorganisms which, when administered in adequate amounts, confer health benefits on the host.” (Latif et al., 2023). These beneficial microbes play a crucial role in promoting health by improving the composition of the gut microbiota, as well as enhancing immune function, leading to a range of positive health effects (Sanders et al., 2019). Recent research has also highlighted the potential advantages of probiotics in the context of neurological health, particularly their influence on the MGB axis (Snigdha et al., 2022). This connection indicates that probiotics may help to manage symptoms and support the treatment of NDDs, such as AD and PD. This report focused on the role of probiotics in the treatment of NDDs through a review of existing clinical and preclinical studies.

THE MICROBIOTA-GUT-BRAIN AXIS IN NEURODEGENERATIVE DISEASES

The gut, which is the largest endocrine organ in the body, produces an array of hormones and peptides that play pivotal roles in systemic health (Drucker, 2002; Hu et al., 2024b). Among the many specialized intestinal epithelial cells, enteroendocrine cells monitor luminal contents and release signaling molecules such as hormones and peptides, which interact with afferent vagal receptors (Gribble and Reimann, 2016). Additionally, the gut microbiota regulates the synthesis and secretion of these hormonal signals, by metabolites such as short-chain fatty acids (SCFAs), which significantly influence the intestinal environment and are linked to neural health (Dalile et al., 2019).

Studies have indicated that gut microbiota dysbiosis can potentially affect disease pathology in patients with NDDs such as AD and PD (Sun and Shen, 2018; Liu et al., 2020; Chidambaram et al., 2022). Dysbiosis can also decrease beneficial bacterial populations and increase harmful strains, leading to gut inflammation, which, in turn, promotes the production of inflammatory factors and increases intestinal permeability (Thevaranjan et al., 2017). Previous studies have shown that the ratio of Firmicutes/Bacteroidetes is disturbed in patients with NDDs compared to healthy controls (Ojha et al., 2023). This cascade is often accompanied by a reduction in neuroprotective metabolites, such as butyrate, and an increase in pathological proteins, such as amyloid-beta (Aβ) and alpha-synuclein (α-syn) (Marizzoni et al., 2020; Mahbub et al., 2024). Although these processes may vary with the specific disease, they generally amplify neuroinflammation in NDDs and are recognized as contributing factors to neuronal death.

The MGB axis employs multiple pathways to facilitate communication between the gut and brain. For example, the vagus nerve functions as a primary conduit, directly linking microbial signals to the central nervous system and connecting microbial activity to neural processes (Fulling et al., 2019). Neuroendocrine pathways, particularly the hypothalamic-pituitary-adrenal (HPA) axis, also play a crucial role in this interaction (Morais et al., 2021; Mlynarska et al., 2022). For example, stress-induced activation of the HPA axis stimulates cortisol release, which increases gut permeability and disrupts the microbial balance, thereby influencing the MGB axis. Furthermore, blood-mediated interactions enable gut microbiota-derived metabolites to enter the bloodstream and influence brain function (Swer et al., 2023). Collectively, these mechanisms demonstrate how the MGB axis dynamically responds to environmental and physiological changes, ultimately influencing neurological health and the progression of neurodegenerative conditions (Fig. 1).

Fig. 1.

Fig. 1

Overview image of the microbiota-gut-brain axis in neurodegenerative diseases. HPA axis; Hypothalamic-pituitary-adrenal axis.

Alzheimer’s disease

One of the primary pathological features of AD is the accumulation of abnormal extracellular Aβ plaques, arising from the cleavage of amyloid precursor protein (APP) (Boxer and Sperling, 2023). This pathological process, combined with tau protein hyperphosphorylation and misfolding, results in the formation of neurofibrillary tangles within neurons. In addition to these primary pathologies, oxidative stress, neuroinflammation, and mitochondrial dysfunction can all critically contribute to neuronal damage, and intensify neurodegenerative processes (Scheltens et al., 2021). Collectively, these pathological changes drive substantial neuronal loss, impair synaptic function, and disrupt the neurotransmitter system, particularly the cholinergic system, which plays an essential role in memory and learning (Khan et al., 2020).

The MGB axis is increasingly being recognized as a key factor influencing the onset and progression of AD (Kesika et al., 2021). Recent studies have proposed that Aβ and tau proteins, which play central roles in AD pathology, may originate in the gut as well as the brain (Jin et al., 2023). Although the exact mechanisms remain unclear, these pathological proteins may be transported from the gut to the brain via the vagus nerve or systemic circulation, potentially contributing to AD development.

In patients with AD, dysbiosis of the gut microbiota has been consistently observed. This condition is characterized by an increase in species such as Helicobacter pylori, Klebsiella pneumoniae, Bacteroides fragilis, and Eggerthella lenta, alongside a decrease in Butyrivibrio hungatei, Butyrivibrio proteoclasticus, and Lactobacillales (Roubaud-Baudron et al., 2012; Haran et al., 2019). Moreover, gut dysbiosis has been shown to influence several neuroinflammatory processes that can exacerbate AD pathology. For example, microbial imbalance is associated with increased production of pro-inflammatory cytokines, such as interleukin (IL)-1β and tumor necrosis factor-α, both of which are linked to neuroinflammation and neurodegeneration (Zhao et al., 2023). This inflammatory state can disrupt intestinal integrity or increase blood-brain barrier (BBB) permeability, thereby facilitating the entry of gut-derived Aβ and tau proteins into the CNS (Mou et al., 2022). This infiltration can thus activate brain-resident immune cells, further accelerating the neurodegenerative changes associated with AD.

Parkinson’s disease

PD, along with AD, is one of the most actively-researched NDDs associated with the MGB axis. The presence of abnormal intracellular aggregates of α-syn, known as Lewy bodies, within neurons is a defining pathological hallmark of PD (Wakabayashi et al., 2013; Taylor et al., 2020). This aggregation of misfolded α-syn, often combined with mitochondrial dysfunction and oxidative stress, disrupts neuronal homeostasis and leads to the progressive degeneration of dopaminergic neurons in the substantia nigra, a brain region critical for motor control (Antony et al., 2013; Kalia and Lang, 2015). Consequently, α-syn has been recognized as both a signature pathology and a primary pathogenic agent in PD progression.

Research linking the MGB axis to PD originated with Braak’s hypothesis in 2003, which proposed that an unknown pathogen, such as a virus or bacterium, could initiate sporadic PD in the gut (Braak et al., 2003). This hypothesis was further supported by the observation that many patients with PD experience gastrointestinal disturbances, including constipation and nausea, often years prior to the onset of motor symptoms (Rietdijk et al., 2017). These early symptoms have also drawn attention to the gut as a potential starting point in the cascade of PD pathology, encouraging a more extensive exploration of gut-brain connections in the disease.

A study on patients with PD revealed significant alterations in the composition of gut microbiota. Specifically, there were increased abundances of genera such as Verrucomicrobia, Mucispirillum, Porphyromonas, Lactobacillus, and Parabacteroides, alongside decreased levels of Prevotella and Prevotellaceae when compared to healthy controls (Scheperjans et al., 2015; Lin et al., 2019). Following Braak’s hypothesis, subsequent studies have identified specific bacterial strains in the gut microbiota, including Proteus mirabilis and Citrobacter rodentium, as potential contributors to PD (Choi et al., 2018; He et al., 2024). These strains have further been suggested to induce misfolding and aggregation of α-syn within the ENS (Huh et al., 2023). Once misfolded in the gut, α-syn can travel along the vagus nerve to the brain in a prion-like fashion, potentially seeding Lewy pathologies in key brain regions associated with PD. Experimental models have further supported this mechanism, demonstrating that misfolded α-syn can spread from the gut to the brain, triggering neurodegenerative changes similar to those observed in patients with PD (Kim et al., 2019).

In addition to bacterial contributions, severe Lewy pathology has been identified in the enteric nervous system (ENS) of patients with PD, correlating with gastrointestinal symptoms, such as chronic constipation, and reflecting early dysfunction within the MGB axis (Hirayama et al., 2023). This gut-origin hypothesis is further supported by the finding that intestinal inflammation and gut permeability increase in PD, allowing bacterial toxins and inflammatory cytokines to influence both α-syn aggregation and neuroinflammatory processes (Sampson et al., 2016; Mou et al., 2022). These disruptions may compromise the BBB, and facilitate the translocation of misfolded proteins and inflammatory mediators to the CNS. Consequently, this cascade of events can amplify neuroinflammation, further contributing to dopaminergic neuronal loss and accelerating the progression of PD (Tansey et al., 2022).

Multiple sclerosis

Multiple sclerosis (MS) is a chronic inflammatory disorder that affects the CNS and presents in both relapsing-remitting and progressive forms (Correale et al., 2017). This condition involves the development of numerous demyelinating lesions, accompanied by lymphocyte infiltration and antibody deposition, resulting in various neurological impairments. The pathogenesis of MS is believed to stem from an autoimmune response primarily involving T cells that react to myelin autoantigens, such as myelin basic protein (Garg and Smith, 2015). Genetic studies have previously established associations between MS susceptibility and genes involved in the activation and proliferation of CD4+ T cells, while evidence has highlighted the critical roles of Th1 and Th17 cells in disease progression (Moser et al., 2020). Moreover, emerging research has indicated that B cells play a significant role in CNS inflammation through mechanisms beyond antibody production, including antigen presentation and cytokine secretion, thereby adding to the complexity of MS immunopathogenesis (van Langelaar et al., 2020).

Recent studies have also indicated that the MGB axis significantly influences MS (Dunalska et al., 2023). Research utilizing spontaneous experimental autoimmune encephalomyelitis (EAE) mouse models has demonstrated that gut microbiota dysbiosis induces CNS autoimmunity through alterations in the gut and peripheral immunity (Johanson et al., 2020; Moles et al., 2021). Correspondingly, patients with MS exhibit an altered gut microbiota, which is linked to increased disease activity. Notably, stool transplantation from patients with MS into germ-free mice exacerbates EAE severity, suggesting that dysbiosis may facilitate immune dysregulation and trigger CNS autoimmunity (Wang et al., 2021). Accordingly, patients with MS exhibit gut dysbiosis characterized by reduced levels of Faecalibacterium, Roseburia, Haemophilus, and Bilophila, alongside an increased abundance of Clostridia, which has been linked to heightened disease activity (Ventura et al., 2019; Ling et al., 2020; Saresella et al., 2020). Specific microbial strains, such as Pseudomonas, Mycoplasma, and Faecalibacterium, are more prevalent in patients with MS, and are correlated with changes in dendritic cell maturation and inflammatory signaling pathways (iMSMS consortium, 2022; Thirion et al., 2023). Moreover, mice transplanted with feces from patients with MS showed reduced levels of IL-10, a cytokine crucial for regulating CNS autoimmunity, leading to increased disease severity. The interplay between the gut microbiota and MS is complex and involves microbial metabolites such as SCFAs, which possess anti-inflammatory properties and may enhance blood-brain barrier integrity. Disruption of this barrier allows inflammatory cells to infiltrate the CNS, thereby exacerbating neuroinflammation and MS 38022314 (Sharifa et al., 2023). Consequently, changes in microbial diversity may contribute to disease onset and progression by modulating immune responses and promoting inflammatory processes.

Amyotrophic lateral sclerosis

Despite extensive research similar to that conducted for other NDDs, the pathophysiology of motor neuron loss in ALS remains unclear (Hardiman et al., 2017). Studies have commonly focused on mutations in genes such as superoxide dismutase 1, transactive response DNA binding protein 43 kDa (TDP-43), fused in sarcoma/translated in liposarcoma, and C9ORF72 repeats, along with additional low-frequency genes linked to ALS risk (Van Es, 2024). While many studies have emphasized the role of motor neurons, the detrimental effects of these mutations on astrocytes indicate their contribution to motor neuron loss.

Recent studies have highlighted the significant impact of gut health on the pathophysiology of ALS, particularly via the MGB axis (Zheng et al., 2023; Noor Eddin et al., 2024). For example, phosphorylated TDP-43 has been detected in the gut prior to the onset of neurological symptoms, indicating that gut alterations play a critical role in ALS development. Several factors, such as intestinal inflammation and increased barrier permeability, can profoundly affect brain function and overall well-being. Moreover, gastrointestinal symptoms, including pain, dysphagia, reflux, and constipation, have been commonly reported in patients with ALS, thus reinforcing the notion of a gut-brain connection (Adamske et al., 2021; Lee et al., 2021b).

Dysbiosis, or an imbalance in the composition of the gut microbiome, has also been observed in both patients with ALS and experimental animal models (Kim et al., 2022; Lee et al., 2024). The patients with ALS exhibit a higher abundance of the Bacteroidetes and a lower abundance of Prevotella spp., Eubacterium rectale and Roseburia intestinalis when compared to healthy controls (Zeng et al., 2020; Nicholson et al., 2021; Hertzberg et al., 2022). In addition, although progress has been made in understanding the relationship between the gut microbiome and NDDs, this field is still in its infancy. Further exploration of the complex interactions within the MGB axis and their contributions to the pathogenesis of ALS may provide novel insights into the mechanisms underlying this disease. Ultimately, this study highlights the potential of direct gut modulation as a therapeutic strategy for managing ALS, paving the way for innovative treatment approaches.

In addition to the classical examples AD, PD, MS, and ALS, NDDs encompass a variety of other disorders, including Huntington’s disease. The MGB axis has emerged as a significant area of research, particularly in relation to AD, PD, MS, and ALS, owing to its potential impact on disease pathophysiology and progression. Although investigations into the role of the MGB axis in other neurodegenerative conditions are beginning, these studies are still in the nascent stages and require further exploration to fully elucidate the mechanisms involved.

PROBIOTICS FOR NDDS TREATMENT

Lactobacillus plantarum (Lactiplantibacillus plantarum)

Lactobacillus plantarum (L. plantarum) is a non-gas-producing lactic acid bacterium found in dairy products, vegetables, meat, wine, the gastrointestinal tract, and the genitourinary system, which is generally recognized as safe (Seddik et al., 2017). Numerous studies have reported the therapeutic effects of this species on NDDs. For example, in AD in vivo models, L. plantarum has been shown to reduce neuroinflammation and the accumulation of Aβ in the brain (Hu et al., 2024a). It further enhances synaptic plasticity, improving cognitive function. Additionally, several studies have shown that L. plantarum contributes to a healthier gut environment by restoring the microbial balance and reducing gut inflammation (Wang et al., 2022b; Di Salvo et al., 2024). For example, Song et al. reported that the anti-AD effects of L. plantarum are mediated by the regulation of the phosphoinositide-3-kinase/ protein kinase B (Akt)/ glycogen synthase kinase-3β (GSK-3β) pathway (Song et al., 2022).

L. plantarum demonstrated similarly promising effects in PD models. In animal models of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, and 6-hydroxydopamine (6-OHDA), L. plantarum consistently improved motor deficits and protected dopaminergic neurons in the brain (Chu et al., 2023; Ma et al., 2023b; Qi et al., 2024). Qi et al. further reported that L. plantarum exerts these therapeutic effects on PD by modulating the glucagon-like peptide 1 (GLP-1)/peroxisome proliferator-activated receptor gamma coactivator-1α pathway, while Ma et al. demonstrated that L. plantarum reduces the exaggerated cortical beta oscillations associated with PD symptoms (Ma et al., 2023b; Qi et al., 2024). Furthermore, Lu et al. discovered that after 12 weeks of L. plantarum administration, patients with PD showed significant improvements in unified PD rating scale (UPDRS) motor and PD questionnaire-39 scores, indicating its potential therapeutic impact in human PD cases, as well as in animal models (Lu et al., 2021).

Moreover, in an MS model induced by cuprizone, L. plantarum improved motor function, promoted the myelination of nerve fibers in the brain, and regulated blood levels of leptin and serotonin, indicating its broader therapeutic potential across NDDs (Sajedi et al., 2021, 2023) (Table 1).

Table 1.

Overview of the therapeutic effects of L. plantarum on NDDs

Disease Research types Strain Model Dose Key effects Ref
AD in vivo L. plantarum ATCC8014 APP/PS1 mice 1×108 CFU/kg for 6 weeks - Alleviation of neuroinflammation and neurodegeneration
- Reduction in brain Aβ accumulation and tau protein phosphorylation
- Enhancement of synaptic plasticity in the brain
- Restoration of gut microbiota and intestinal barrier integrity
Hu et al., 2024a
in vivo L. plantarum HEAL9 SAMP8 mice 1×109 CFU/mouse for 2 months - Alleviation of cognitive impairment and gut motility disorders
- Reduction in neuroinflammation and Aβ accumulation in the brain
Di Salvo et al., 2024
in vivo L. plantarum MWFLp-182 D-galactose injected mice 1×109 CFU/mL (0.2 mL/mouse) for 8 weeks - Increase in anti-inflammatory cytokines and expression of tight junction proteins in the gut
- Enhancement of postsynaptic plasticity in the brain
- Increase in BDNF and Nrf2 levels in the brain
Nie et al., 2024
in vivo L. plantarum MA2 D-galactose/ AlCl3-injected rats 1×108 or 109 CFU/kg for 12 weeks - Improvement in cognitive impairment and anxiety-related behaviors
- Protection of neurons and reduction of Aβ accumulation in the brain
- Reduction of neuroinflammation
- Alleviation of intestinal mucosal damage and restoration of gut microbiota composition
Wang et al., 2022b
in vivo L. plantarum DP189 D-galactose/ AlCl3-injected mice 1×109 CFU/mL for 10 weeks - Improvement in cognitive impairment
- Increase in serotonin, dopamine, and GABA levels
- Protection of neurons and reduction of Aβ accumulation in the brain
- Inhibition of tau hyperphosphorylation via modulation of the PI3K/Akt/GSK-3β pathway in the brain
Song et al., 2022
in vivo L. plantarum MTCC 1325 D-galactose-injected albino rats 12×108 CFU/mL (10 mL/kg) for 60 days - Improvement in cognitive impairment
- Increase in acetylcholine levels in the brain
- Inhibition of Aβ accumulation
Nimgampalle and Kuna, 2017
in vivo L. plantarum C29 D-galactose injected mice 1×1010 CFU/mouse for 5 weeks - Improvement in cognitive impairment
- Regulation of BDNF and CREB activation
- Reduction in expression of inflammatory factors
Woo et al., 2014
PD in vivo L. plantarum SG5 MPTP-injected mice 1×109 CFU for 35 days - Improvement in motor dysfunction
- Protection of neurons and inhibition of α-synuclein aggregation
- Reduction in neuroinflammation and mitigation of BBB damage
- Restoration of gut microbiota composition and regulation of GLP-1 secretion
Qi et al., 2024
in vivo L. plantarum CCFM405 Rotenone-injected mice 1×109 CFU/mL (0.2 mL/mouse) for 9 weeks - Improvement in motor dysfunction and constipation
- Protection of neurons and alleviation of neuroinflammation
- Increase in dopamine and serotonin levels in the brain
- Reduction of gut inflammation and restoration of gut microbiota composition
- Enhanced biosynthesis of branched-chain amino acids in the gut
Chu et al., 2023
in vivo L. plantarum PS128 6-OHDA-injected rats 1.5×1010 CFU for 6 weeks - Normalization of power spectral density of beta oscillations in the cortex
- Improvement in motor dysfunction
Ma et al., 2023b
in vivo L. plantarum DP189 MPTP-injected mice 1×109 CFU/mL (0.2 mL/mouse) for 14 days - Reduction of inflammation and oxidative stress-related factors in the brain
- Decrease in α-synuclein accumulation in the brain
- Restoration of gut microbiota composition
Wang et al., 2022a
Case reports L. plantarum PS128 Patients with PD 2 capsules (3×109 CFU/capsule) for 12 weeks - Improvement in UPDRS motor scores
- Improvement in PDQ-39
Lu et al., 2021
MS in vivo L. plantarum PTCC1058 Cuprizone-induced mice 1×108 CFU/kg for 2 months - Improvement of motor impairment
- Improvement of myelination of the nerve fibers in the brain
Sajedi et al., 2023
in vivo L. plantarum PTCC1058 Cuprizone-induced mice 1×108 CFU/kg for 2 months - Decrease in blood leptin
- Increase in blood serotonin
Sajedi et al., 2021

AD, Alzheimer’s disease; L. plantarum, Lactobacillus plantarum; APP/PS1, amyloid precursor protein and mutant human presenilin 1; CFU, colony forming unit; Aβ, Amyloid β; SAMP8, Senescent accelerated prone 8; BDNF, brain-derived neurotrophic factor; NRF-2, Nuclear factor erythroid-2-related factor 2; GABA, γ-aminobutyric acid; CREB, c-AMP response element binding protein; PD, Parkinson’s disease; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; BBB, Blood-Brain Barrier; GLP-1, Glucagon-Like Peptide 1; UPDRS, Unified Parkinson's disease rating scale; PDQ-39, Parkinson's Disease Questionnaire-39; MS, Multiple sclerosis.

Bifidobacterium breve

Bifidobacterium breve (B. breve) is one of the first bacteria isolated from the feces of healthy infants, and has been recognized as an early colonizer of the infant gut with antimicrobial activity (Sushma et al., 2023). This strain is primarily found in the breast milk and feces of healthy infants (Laursen et al., 2021).

B. breve has shown promising effects on cognitive improvement in animal models of AD, as well as in patients with cognitive impairment (Kobayashi et al., 2019a; Xiao et al., 2020; Ohno et al., 2022; Zhu et al., 2023). In multiple AD animal models, B. breve consistently reduced neuroinflammation and inhibited Aβ accumulation, both of which key factors in AD pathology. Abdelhamid et al. further demonstrated that B. breve exerts its effects through different pathways, including regulation of the Akt/GSK-3β pathway in wild-type mice and activation of the extracellular signal-regulated kinase (ERK)/ hypoxia inducible factor-1α (HIF-1α) pathway in APP knock-in mice (Abdelhamid et al., 2022a, 2022b). Moreover, findings from four randomized controlled trials (RCTs) indicated that B. breve improves cognitive scores (AD assessment scale-cognitive component-Japanese version, Mini-Mental State Examination [MMSE] and repeatable battery for neuropsychological status [RBANS]) in elderly patients with mild cognitive impairment (MCI) (Kobayashi et al., 2019b; Xiao et al., 2020; Asaoka et al., 2022). Notably, the RBANS scores correlated with hemoglobin A1c levels, suggesting a link between cognitive function and metabolic health (Bernier et al., 2021).

B. breve has further demonstrated therapeutic benefits in both animal models of PD and MS. In PD models, B. breve significantly improved MPTP-induced cognitive and behavioral deficits, and helped to restore the gut balance (Valvaikar et al., 2024). Ishii et al. also reported that B. breve promotes fear extinction by normalizing abnormal neuropsin expression in the hippocampus in MPTP-treated mice (Ishii et al., 2021). Furthermore, Hasaniani et al. found that B. breve outperformed another probiotic, Lactobacillus casei in a cuprizone-induced MS rat model, by more effectively enhancing cognitive function, reducing oxidative stress, and alleviating demyelination, underscoring B. breve’s potential as a therapeutic agent across multiple NDDs (Hasaniani et al., 2024) (Table 2).

Table 2.

Overview of the therapeutic effects of B. breve on NDDs

Disease Research types Strain Model Dose Key effects Ref
AD in vivo B. breve MCC1274 AppNL-G-F mice 1×109 CFU/mouse for 4 weeks - Improvement in cognitive function
- Reduction in Aβ accumulation and neuroinflammation in the brain
- Increase in synaptic protein expression in the brain
Abdelhamid et al., 2024
in vivo B. breve HNXY26M4 APP/PS1 Mice 1×109 CFU/mouse for 12 weeks - Improvement in cognitive function
- Alleviation of neuroinflammation and synaptic dysfunction
- Restoration of gut microbiota balance
Zhu et al., 2023
in vivo B. breve MCC1274 APP Knock-In mice 1×109 CFU/mouse for 4 months - Increase in antioxidant-active metabolites in plasma
- Increase in glutathione-related metabolites in plasma
Ohno et al., 2022
in vivo B. breve MCC1274 Wild type mice 1×109 CFU/mouse for 4 months - Reduction in Aβ42 levels and tau phosphorylation in the brain
- Activation of the AKT/GSK-3β pathway in the brain
- Inhibition of neuroinflammation
Abdelhamid et al., 2022a
in vivo B. breve MCC1274 APP Knock-In mice 1×109 CFU/mouse for 4 months - Improvement in memory impairment
- Inhibition of Aβ accumulation
- Activation of the ERK/HIF-1α signaling pathway
- Inhibition of neuroinflammation
Abdelhamid et al., 2022b
in vivo B. breve MCC1274 Aβ-Injected mice 1×109 organisms/mouse for 11 days - Improvement in cognitive function
- Inhibition of gene expression related to inflammation and immune responsiveness in the brain
Kobayashi et al., 2017
RCT B. breve MCC1274 Older patients with MCI 2×1010 CFU for 24 weeks - Improvement in the "orientation" subscale of ADAS-Jcog
- Improvement in the "orientation in time" and "writing" subscales of MMSE
Asaoka et al., 2022
RCT B. breve MCC1274 Older patients with MCI 2×1010 CFU for 16 weeks - Total RBANS scores are correlated with hemoglobin A1c levels. Bernier et al., 2021
RCT B. breve MCC1274 Older patients with MCI 2×1010 CFU for 16 weeks - Increase in total RBANS scores
- Increase in scores of immediate memory, visuospatial/constructional, and delayed memory in both intention-to-treat analysis and per-protocol analysis
Xiao et al., 2020
RCT B. breve MCC1274 Older adults with memory comlaints 2 capsules (1×1010 CFU/capsule) for 12 weeks - Increase in the 'immediate memory' subscale of RBANS and MMSE Kobayashi et al., 2019b
Clinical trials B. breve MCC1274 Older patients with MCI 2 capsules (2×1010 CFU/capsule) for 24 weeks - Increase in MMSE scores
- Increase in POMS2 and GSRS scores
Kobayashi et al., 2019a
PD in vivo B. breve Bif11 MPTP-injected rats 1 or 2×1010 CFU/mouse for 21 days - Improvement in cognitive and motor functions
- Protection of neurons and inhibition of neuroinflammation
- Restoration of SCFAs in the gut and reduction of intestinal permeability
Valvaikar et al., 2024
in vivo B. breve CCFM1067 MPTP-injected mice 1.0×109 CFU/mL (0.2 mL/mouse) for 33 days - Protection of neurons and inhibition of neuroinflammation
- Alleviation of oxidative stress and mitigation of BBB damage
- Restoration of gut microbiota balance
Li et al., 2022
in vivo B. breve MCC1274 MPTP-injected mice 1×109 organisms/mouse for 4 days - Recovery of facilitation of contextual fear extinction
- Enhancement of synaptic plasticity in the brain
- Reduction of neuropsin levels in the brain
Ishii et al., 2021
MS in vivo B. breve PTCC1367 Cuprizone-induced rats 2×109 CFU/mouse for 28 days - Improvement in cognitive function
- Alleviation of oxidative stress and demyelination
Hasaniani et al., 2024

AD, Alzheimer’s disease; B. breve, Bifidobacterium breve; APP/PS1, amyloid precursor protein and mutant human presenilin 1; CFU, colony forming unit; Aβ, Amyloid β; APP, Amyloid precursor protein; AKT, Protein kinase B; GSK-3β, glycogen synthase kinase-3β; ERK, Extracellular signal-regulated kinase; HIF-1α, Hypoxia Inducible Factor 1α; RCT, Randomized controlled trial; MCI, Mild cognitive impairment; ADAS-Jcog, Alzheimer Disease Assessment Scale (Japanese version) cognitive subscale; MMSE, Mini-Mental State Examination; RBANS, Repeatable Battery for the Assessment of Neuropsychological Status; POMS2, Profile of Mood States 2nd Edition; GSRS, Gastrointestinal Symptom Rating Scale; PD, Parkinson’s disease; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; SCFAs, Short-chain fatty acids; BBB, Blood-Brain Barrier; MS, Multiple sclerosis.

Lacticaseibacillus rhamnosus (Lactobacillus rhamnosus)

Many bacterial strains that were once classified as Lactobacillus casei have now been reclassified, including the species Lactobacillus rhamnosus (Lacticaseibacillus rhamnosus; L. rhamnosus) and Lactobacillus paracasei (Huang et al., 2018). L. rhamnosus has been isolated from various environments, including the human gut and vagina, and has been shown to exert therapeutic effects in numerous animal models of NDDs (Chung et al., 2023).

In various animal models of AD, L. rhamnosus consistently improved cognitive and memory functions, and further inhibited neuroinflammation and reduced blood levels of Aβ (Li et al., 2023). Akhgarjand et al. previously conducted an RCT involving patients with AD, finding that a 12-week supplementation of L. rhamnosus significantly improved MMSE, CFT, and GAD-7 scores (Akhgarjand et al., 2022). Thus, L. rhamnosus exhibited significant therapeutic effects in both animal models and human patients with AD.

Furthermore, in models of PD, L. rhamnosus has been shown to improve motor deficits and protect neurons (Xie and Prasad, 2020; Aktas et al., 2024). It also helps restore the gut microbial balance. Notably, Xie et al. discovered that supplementation with L. rhamnosus alleviated hippocampus-dependent cognitive deficits in 6-OHDA-injected rats (Xie and Prasad, 2020). Additionally, in models of HD and ALS, specifically mutant TDP-43A315T and mutant FUS5 Caenorhabditis elegans, L. rhamnosus exerted neuroprotective effects via the regulation of fatty acid metabolism (Labarre et al., 2022) (Table 3).

Table 3.

Overview of the therapeutic effects of L. rhamnosus on NDDs

Disease Research types Strain Model Dose Key effects Ref
AD in vivo L. rhamnosus D-galactose injected rats 12×108 CFU/mL (10 mL/kg) for 5 weeks - Improvement in cognitive function
- Reduction of inflammatory cytokines in the brain
Heydari et al., 2025
in vivo L. rhamnosus AlCl3-injected rats 1×106 CFU/mouse for 5 weeks - Inhibition of p-tau and Aβ accumulation in the brain
- Improvement in cognitive function
- Regulation of liver inflammation and fibrosis-related markers
Abu-Elfotuh et al., 2023
in vivo L. rhamnosus GG Noise-induced rats 1×108 CFU/mouse for 56 days - Alleviation of memory impairment
- Restoration of gut microbiota balance
- Improvement in serum Aβ and inflammation levels
Li et al., 2023
in vivo L. rhamnosus UBLR-58 Scopolamine-injected mice 1×106 CFU/mouse for 10 days - Improvement in cognitive function
- Protection of neurons in the brain
Patel et al., 2020
RCT L. rhamnosus HA-114 Patients with AD 1×1015 CFU twice daily for 12 weeks - Improvement in total MMSE scores
- Increase in CFT scores
- Improvement in GAD-7 scores
Akhgarjand et al., 2022
PD in vivo L. rhamnosus E9 MPTP-injected mice 1×108 CFU/mL (0.1 mL/mouse) for 10 days - Alleviation of motor dysfunction
- Protection of neurons and increase in dopamine levels in the brain
- Reduction of intestinal barrier damage and restoration of gut microbiota balance
Aktas et al., 2024
in vivo L. rhamnosus HA-114 6-OHDA-injected rats 1×108 and 109 CFU/mouse for 6 weeks - Recovery of hippocampal-dependent cognitive deficits Xie and Prasad, 2020
HD/ ALS in vivo L. rhamnosus HA-114 Mutant
TDP-43A315T, mutant FUSS57Δ
C. elegans
- - Neuroprotective effects through the regulation of fatty acid metabolism genes Labarre et al., 2022

AD, Alzheimer’s disease; L. rhamnosus, Lactobacillus rhamnosus; CFU, colony forming unit; Aβ, Amyloid β; RCT, Randomized controlled trial; MMSE, Mini-Mental State Examination; CFT, Categorical verbal fluency test; GAD-7, Generalized Anxiety Disorder-7; PD, Parkinson’s disease; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 6-OHDA, 6-Hydroxydopamine; HD, Huntington’s disease; ALS, Amyotrophic lateral sclerosis; TDP-43, TAR DNA-binding protein-43; FUS, Fused in Sarcoma; C. elegans, Caenorhabditis elegans.

Clostridium butyricum

Clostridium butyricum (C. butyricum), an anaerobic bacterium known for its ability to produce butyrate and form spores, has been safely used as a probiotic for decades (Cassir et al., 2016). This bacterium is found in various environments including soil, fermented dairy products, and vegetables. C. butyricum is recognized for its efficacy against various diseases, particularly its therapeutic effects against NDDs.

In animal models of AD, C. butyricum improves cognitive function while inhibiting neuroinflammation and the accumulation of Aβ (Sun et al., 2020). Su et al. proposed a mechanism of action for C. butyricum, demonstrating that it reduces the expression of Toll-like receptor 4 and nuclear factor kappa B in both the brain and gut (Su et al., 2023). In PD models, C. butyricum improved motor function and protected neurons in MPTP-induced mice (Wang et al., 2023). It also helps regulate imbalances in the gut microbiota. Sun et al. provided evidence that C. butyricum restores the levels of GLP-1 receptors that had been damaged by MPTP in both the brain and gut, supporting its therapeutic mechanisms (Sun et al., 2021a). Finally, C. butyricum has been shown to increase microbial diversity in the gut and regulate p38 and c-Jun N-terminal kinases in the spinal cord of mice with EAE, which is a model for MS (Chen et al., 2019). Thus, C. butyricum has demonstrated significant therapeutic effects and elucidated mechanisms in various NDDs (Table 4).

Table 4.

Overview of the therapeutic effects of C. butyricum on NDDs

Disease Research types Strain Model Dose Key effects Ref
AD in vivo C. butyricum ICV-STZ-injected mice 2×108 CFU/mouse for 21 days - Improvement in cognitive impairment
- Protection of neurons and reduction of p-tau levels in the brain
- Decreased expression of TLR4, MYD88, and NF-κB p65 in the brain and gut
- Alleviation of intestinal barrier damage
Su et al., 2023
in vivo C. butyricum APP/PS1 mice 1×109 CFU/mL (0.2 mL/mouse) for 4 weeks - Improvement in cognitive function
- Inhibition of Aβ accumulation and neuroinflammation
Sun et al., 2020
PD in vivo C. butyricum NCU-02 MPTP-injected mice 1×109 CFU/mL for 7 days - Alleviation of motor dysfunction
- Protection of neurons and reduction of α-synuclein levels
- Improvement in gut microbiota imbalance
Wang et al., 2023
in vivo C. butyricum WZMC1016 MPTP-injected mice 5×108 CFU/mouse for 4 weeks - Improvement in motor dysfunction
- Protection of neurons and enhancement of synaptic function
- Inhibition of neuroinflammation
- Restoration of gut microbiota balance
- Recovery of GLP-1 receptor levels in the gut and brain
Sun et al., 2021a
MS in vivo C. butyricum EAE-injected mice 5×105 or 106 or 107 CFU/mL (0.2 mL/mouse) for 3 weeks - Increase in the diversity of gut microbiota composition
- Decrease in Th17 response and increase in Treg response
- Reduction in p38 and JNK activation in the spinal cord
Chen et al., 2019

AD, Alzheimer’s disease; C. butyricum, Clostridium butyricum; ICV-STZ, Intracerebroventricularly-streptozotocin; CFU, colony forming unit; TLR-4, Toll-like receptor 4; MYD88, Myeloid differentiation primary response 88; NF-κB, Nuclear factor kappa B; Aβ, Amyloid β; PD, Parkinson’s disease; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; GLP-1, Glucagon-Like Peptide 1; MS, Multiple sclerosis; EAE, Experimental autoimmune encephalomyelitis; JNK, c-Jun N-terminal kinases.

Multi-strain probiotics

Probiotics are generally applied as combinations of various bacterial strains, rather than individually. Although not all multi-probiotic formulations consistently demonstrate enhanced effects, prior in vitro studies have indicated that some multi-strain probiotics may offer greater benefits than single-strain probiotics (Kwoji et al., 2021). Consequently, extensive research has been conducted on multiple prebiotic combinations. Among these, L. plantarum and Lactobacillus acidophilus (L. acidophilus) have frequently been used to treat NDDs.

As previously mentioned, L. plantarum is abundant in many food sources, including dairy products and milk, and can also be found in the gastrointestinal tract. In contrast, although L. acidophilus is less common in dairy products, it is widely distributed in the gastrointestinal tract and exhibits excellent resistance to acid and bile salts (Gao et al., 2022).

Sahu et al. demonstrated that a complex probiotic formulation containing L. plantarum, L. acidophilus, Lactobacillus delbrueckii subsp. Bulgaricus, Lactobacillus paracasei, B. breve, Bifidobacterium longum, Bifidobacterium infantis, and Streptococcus salivarius subsp (Sahu et al., 2023). Thermophilus effectively inhibited neuroinflammation and Aβ accumulation in AppNL-G-F mice induced by colitis-associated AD. Additionally, Ghalandari et al. conducted an RCT involving patients with PD, finding that a combination of L. plantarum, L. acidophilus, Lactobacillus casei, Lactobacillus bulgaricus, Bifidobacterium infantis, Bifidobacterium longum, B. breve, and Streptococcus thermophilus positively affected the frequency of bowel movements in patients with PD, although they did not significantly influence motor function (Ghalandari et al., 2023).

Moreover, Zhang et al. found that probiotics containing L. plantarum and L. acidophilus maintained the gut barrier integrity and neuromuscular function, while clearing protein aggregates in an ALS mouse model (Zhang et al., 2024b). Farber et al. further demonstrated in an RCT involving patients with MS that probiotics, including L. plantarum and L. acidophilus, improved overall symptoms and enhanced gut regulation (Straus Farber et al., 2024).

As such, combinations of various probiotics show promise for the treatment of NDDs, particularly combinations of L. plantarum and L. acidophilus, which are frequently present in probiotic formulations.

Other Species

In addition to the aforementioned strains, various probiotics have demonstrated notable therapeutic potential in the treatment of NDDs. Among these, Lactobacillus acidophilus (L. acidophilus), commonly found in multi-strain probiotic formulations, is frequently included in combined preparations, although its effects as a single strain have not been extensively studied. Nevertheless, this bacterium has shown promise in the treatment of conditions such as AD, PD, and ALS, with some effects validated in clinical studies (Yang et al., 2020; Sancandi et al., 2022; Xiao-Hang et al., 2024; Zhang et al., 2024b).

Studies of AD involving various strains, such as Bifidobacterium longum, Lactobacillus paracasei, and Bifidobacterium lactis, have shown significant effects in both in vivo and clinical studies (Cao et al., 2021; Li et al., 2022; Parra et al., 2023). However, Lactococcus lactis (L. lactis) is a unique strain commonly engineered for therapeutic applications in PD (Fang et al., 2020; Pan et al., 2022; Yue et al., 2022). In prior studies, L. lactis has been engineered to modulate in MPTP-induced mouse models as a strain engineered to modulate GLP-1. This engineered probiotic effectively regulates GLP-1, a key factor in the gut-brain axis, resulting in improvements not only in motor function but also in non-motor symptoms of PD, such as cognitive function.

Lactobacillus casei (L. casei) has been shown to be effective at reducing demyelination and inflammation in MS, particularly in cuprizone-induced mouse models, by modulating inflammasome activity (Digehsara et al., 2021; Gharehkhani Digehsara et al., 2021). Other strains, such as Lactobacillus reuteri and Streptococcus thermophilus, have also demonstrated benefits against MS by reducing demyelination, underscoring ongoing research on effective probiotics for this condition (Dargahi et al., 2020; He et al., 2019; Montgomery et al., 2022).

While several prior studies have focused on ALS and HD, Labarre et al. showed that probiotics in C. elegans models of these diseases could improve lipid homeostasis and protect neurons via β-oxidation regulation (Labarre et al., 2022). This study highlights the emerging therapeutic role of probiotics in NDDs, and supports the further investigation of strain-specific effects for targeted treatments. Thus, current research on probiotics is most actively focused on AD and PD among the NDDs, whereas studies on other NDDs are still in their early stages (Table 5).

Table 5.

Overview of the key probiotics with therapeutic potential in NDDs

Disease Strain Ref Clinical trials
(U.S FDA)
in vivo study Clinical study
Used as a single strain Used as part of a multi-strain mixture Used as a single strain Used as part of a multi-strain mixture
AD A. muciniphila Ou et al., 2020; He et al., 2022; Qu et al., 2023; Maftoon et al., 2024 n.a. n.a. n.a. n.a.
B. animalis n.a. Sun et al., 2021b; Hamid and Zahid, 2023; Lee et al., 2023; Webberley et al., 2023 n.a. Fei et al., 2023 n.a.
B. breve Kobayashi et al., 2017; Abdelhamid et al., 2022a, 2022b; Ohno et al., 2022; Bernier et al., 2023; Zhu et al., 2023; Abdelhamid et al., 2024 Bonfili et al., 2018; Kaur et al., 2020; Deng et al., 2022; Sahu et al., 2023 Kobayashi et al., 2019a, 2019b; Xiao et al., 2020; Bernier et al., 2021; Asaoka et al., 2022 Hsu et al., 2023 Early Phase 1 (NCT06181513)
B. lactis Balaguer et al., 2023; Choi et al., 2024 Athari Nik Azm et al., 2018; Bonfili et al., 2020; Yang et al., 2020; Bonfili et al., 2021; Cao et al., 2021; Yang et al., 2023b; Kim et al., 2024; Xiao-Hang et al., 2024 n.a. Fei et al., 2023; Hsu et al., 2023 n.a.
B. longum Lee et al., 2019 Athari Nik Azm et al., 2018; Bonfili et al., 2018; Mohammadi et al., 2019; Rezaei Asl et al., 2019; Rezaeiasl et al., 2019; Kaur et al., 2020; Kim et al., 2021b; Lee et al., 2021a; Sun et al., 2021b; Deng et al., 2022; Ma et al., 2023a; Sahu et al., 2023 Akhgarjand et al., 2022; Shi et al., 2022 Tamtaji et al., 2019a; Kim et al., 2021a; Akhgarjand et al., 2024 n.a.
L. acidophilus Beltagy et al., 2021 Athari Nik Azm et al., 2018; Bonfili et al., 2018; Rezaei Asl et al., 2019; Rezaeiasl et al., 2019; Bonfili et al., 2020; Kaur et al., 2020; Yang et al., 2020; Bonfili et al., 2021; Deng et al., 2022; Sahu et al., 2023; Webberley et al., 2023; Yang et al., 2023b; Xiao-Hang et al., 2024 n.a. Akbari et al., 2016; Agahi et al., 2018; Tamtaji et al., 2019a; Fei et al., 2023 n.a.
L. brevis n.a. Bonfili et al., 2018, 2020, 2021; Lee et al., 2023; Kim et al., 2024 n.a. n.a. n.a.
L. paracasei Smith et al., 2022; Kumaree et al., 2023 Bonfili et al., 2018, 2020; Kaur et al., 2020; Bonfili et al., 2021; Sahu et al., 2023; Lana et al., 2024; Traini et al., 2024 n.a. Fei et al., 2023 Early Phase 1 (NCT06181513)
L. plantarum Woo et al., 2014; Nimgampalle and Kuna, 2017; Cheon et al., 2021; Song et al., 2022; Wang et al., 2022b; Di Salvo et al., 2024; Hu et al., 2024a; Nie et al., 2024 Bonfili et al., 2018, 2020; Kaur et al., 2020; Tan et al., 2020; Lee et al., 2021a; Shamsipour et al., 2021; Sun et al., 2021b; Sahu et al., 2023; Webberley et al., 2023; Wu et al., 2023b; Medeiros et al., 2024; Zaki et al., 2024 n.a. Bartos et al., 2023; Fei et al., 2023; Hsu et al., 2023 Early Phase 1 (NCT06181513)
L. rhamnosus Patel et al., 2020; Abu-Elfotuh et al., 2023; Heydari et al., 2025 Mehrabadi and Sadr, 2020; Hamid and Zahid, 2023; Foster et al., 2024; Lana et al., 2024; Traini et al., 2024; Xiao-Hang et al., 2024 Sanborn et al., 2018; Akhgarjand et al., 2022 Fei et al., 2023; Akhgarjand et al., 2024 Early Phase 1 (NCT06181513)
S. thermophilus Zhang et al., 2024a Bonfili et al., 2018, 2020, 2021 Bartos et al., 2023
PD B. bifidum n.a. Hsieh et al., 2020; Alipour Nosrani et al., 2021; Ilie et al., 2022 n.a. Borzabadi et al., 2018; Neiworth-Petshow and Baldwin-Sayre, 2018; Tamtaji et al., 2019b; Tan et al., 2021 Phase 2 (NCT03968133)
B. breve Valvaikar et al., 2024 Ishii et al., 2021; Li et al., 2022; Zhou et al., 2023 n.a. Barichella et al., 2016; Magistrelli et al., 2019; Ghalandari et al., 2023 n.a.
B. lactis n.a. Srivastav et al., 2019; Castelli et al., 2020; Cuevas-Carbonell et al., 2022; Ilie et al., 2022; Parra et al., 2023 n.a. Barichella et al., 2016; Neiworth-Petshow and Baldwin-Sayre, 2018; Magistrelli et al., 2019; Sun et al., 2022 Phase 2 (NCT03968133)
C. butyricum Sun et al., 2021a; Fan et al., 2023; Wang et al., 2023; Wu et al., 2023a n.a. n.a. n.a. n.a.
L. acidophilus n.a. Srivastav et al., 2019; Castelli et al., 2020; Alipour Nosrani et al., 2021; Ilie et al., 2022; Sancandi et al., 2022; Zhou et al., 2023 n.a. Barichella et al., 2016; Borzabadi et al., 2018; Neiworth-Petshow and Baldwin-Sayre, 2018; Magistrelli et al., 2019; Tamtaji et al., 2019b; Ibrahim et al., 2020; Ghyselinck et al., 2021; Tan et al., 2021; Du et al., 2022; Ghalandari et al., 2023; Zali et al., 2024 Phase 4 (NCT04871464) & Phase 2 (NCT03968133)
L. fermentum Marsova et al., 2020 Alipour Nosrani et al., 2021; Napoles-Medina et al., 2023 n.a. Borzabadi et al., 2018; Tamtaji et al., 2019b
L. lactis Fang et al., 2020; Pan et al., 2022; Yue et al., 2022 Hsieh et al., 2020; Hawrysh et al., 2023 n.a. Ibrahim et al., 2020 Phase 2 (NCT03968133)
L. paracasei n.a. Castelli et al., 2020; Ilie et al., 2022; Zhou et al., 2023 n.a. Yang et al., 2023a; Zali et al., 2024 n.a.
L. plantarum Cheon et al., 2021; Wang et al., 2022a; Chu et al., 2023; Ma et al., 2023b; Qi et al., 2024 Castelli et al., 2020; Hsieh et al., 2020; Perez Visnuk et al., 2020; Ilie et al., 2022; Sancandi et al., 2022; Napoles-Medina et al., 2023; Zhou et al., 2023; Perez Visnuk et al., 2024 34277679 (Lu et al., 2021) Barichella et al., 2016; Neiworth-Petshow and Baldwin-Sayre, 2018; Magistrelli et al., 2019; Ghyselinck et al., 2021; Ghalandari et al., 2023 n.a.
L. rhamnosus Xie and Prasad, 2020; Aktas et al., 2024 Srivastav et al., 2019; Hsieh et al., 2020; Cuevas-Carbonell et al., 2022; Sancandi et al., 2022; Parra et al., 2023 n.a. Barichella et al., 2016; Neiworth-Petshow and Baldwin-Sayre, 2018; Magistrelli et al., 2019; Ghyselinck et al., 2021; Tan et al., 2021; Zali et al., 2024 n.a.
S. thermophilus Castelli et al., 2020; Perez Visnuk et al., 2020; Zhou et al., 2023; Perez Visnuk et al., 2024 n.a. Barichella et al., 2016; Neiworth-Petshow and Baldwin-Sayre, 2018; Ghalandari et al., 2023 n.a.
MS B. breve Hasaniani et al., 2024 n.a. n.a. Tankou et al., 2018; Rahimlou et al., 2022a, 2022b; Moravejolahkami et al., 2023; Straus Farber et al., 2024 n.a.
B. infantis n.a. n.a. n.a. Tankou et al., 2018; Rahimlou et al., 2022a, 2022b; Moravejolahkami et al., 2023; Straus Farber et al., 2024 n.a.
B. longum n.a. n.a. n.a. Tankou et al., 2018; Rahimlou et al., 2022a, 2022b; Moravejolahkami et al., 2023; Straus Farber et al., 2024 n.a.
L. acidophilus Ren et al., 2021 n.a. n.a. Kouchaki et al., 2017; Tankou et al., 2018; Rahimlou et al., 2022a; Rahimlou et al., 2022b; Moravejolahkami et al., 2023; Straus Farber et al., 2024 n.a.
L. bulgaricus n.a. n.a. n.a. Tankou et al., 2018; Rahimlou et al., 2022a, 2022b; Moravejolahkami et al., 2023; Straus Farber et al., 2024 n.a.
L. casei Digehsara et al., 2021; Gharehkhani Digehsara et al., 2021 Samani et al., 2022 n.a. Kouchaki et al., 2017; Rahimlou et al., 2022a, 2022b; Moravejolahkami et al., 2023 n.a.
L. paracasei n.a. Lavasani et al., 2010 n.a. Tankou et al., 2018; Chakamian et al., 2023; Straus Farber et al., 2024 n.a.
L. plantarum Sajedi et al., 2021, 2023 Lavasani et al., 2010; Salehipour et al., 2017; Samani et al., 2022 n.a. Tankou et al., 2018; Rahimlou et al., 2022a, 2022b; Chakamian et al., 2023; Moravejolahkami et al., 2023; Straus Farber et al., 2024 n.a.
L. reuteri He et al., 2019; Montgomery et al., 2022 n.a. n.a. n.a. n.a.
L. rhamnosus n.a. Samani et al., 2022 n.a. Rahimlou et al., 2022a, 2022b n.a.
S. thermophilus Dargahi et al., 2020 n.a. n.a. Tankou et al., 2018; Rahimlou et al., 2022a, 2022b; Moravejolahkami et al., 2023; Straus Farber et al., 2024 n.a.
ALS B. breve n.a. Zhang et al., 2024b n.a. n.a. n.a.
B. infantis n.a. Zhang et al., 2024b n.a. n.a. n.a.
B. longum n.a. Xin et al., 2024; Zhang et al., 2024b n.a. n.a. n.a.
E. faecium n.a. Xin et al., 2024 n.a. n.a. n.a.
L. acidophilus n.a. Xin et al., 2024; Zhang et al., 2024b n.a. n.a. n.a.
L. helveticus n.a. Zhang et al., 2024b n.a. n.a. n.a.
L. paracasei n.a. Zhang et al., 2024b n.a. n.a. n.a.
L. plantarum n.a. Zhang et al., 2024b n.a. n.a. n.a.
L. rhamnosus Labarre et al., 2022 n.a. n.a. n.a. n.a.
S. thermophilus n.a. Zhang et al., 2024b n.a. n.a. n.a.
HD L. rhamnosus Labarre et al., 2022 n.a. n.a. n.a. n.a.

FDA, Food and Drug Administration; AD, Alzheimer’s disease; A. muciniphila, Akkermansia muciniphila; B. animalis, Bifidobacterium animalis; B. breve, Bifidobacterium breve; B. lactis, Bifidobacterium animalis subsp. lactis; B. longum, Bifidobacterium longum; L. acidophilus, Lactobacillus acidophilus; L. brevis, Levilactobacillus brevis; L. paracasei, Lacticaseibacillus paracasei; L. plantarum, Lactiplantibacillus plantarum; L. rhamnosus, Lacticaseibacillus rhamnosus; S. thermophilus, Streptococcus thermophilus; PD, Parkinson’s disease; B. infantis, Bifidobacterium infantis; C. butyricum, Clostridium butyricum; L. fermentum, Lactobacillus fermentum; L. lactis, Lactococcus lactis; MS, Multiple sclerosis; L. bulgaricus, Lactobacillus bulgaricus; L. casei, Lacticaseibacillus casei; L. reuteri, Lactobacillus reuteri; ALS, Amyotrophic lateral sclerosis; E. faecium, Enterococcus faecium; L. helveticus, Lactobacillus helveticus; HD, Huntington’s disease.

PROBIOTICS CURRENTLY UNDERGOING CLINICAL TRIALS FOR THE TREATMENT OF NDDS

The clinical trial progression for NDDs treatments based on U.S. FDA guidelines is briefly summarized in Table 6. Currently, probiotic formulations in the NDD category are being developed as therapeutic agents for AD and PD. For AD, excluding those marked as not applicable, the highest reported trial phase was Phase 1, which involved a combination of Lactobacillus paracasei, L. plantarum, L. rhamnosus, Lactobacillus helveticus, and B. breve.

Table 6.

Probiotics currently undergoing clinical trials for the treatment of NDDs (https://clinicaltrials.gov/)

Disease Phase Strain Indication Dose Country ID
AD Early
Phase 1
Mixture of L. paracasei, L. plantarum, L. rhamnosus, L. helveticus, B. breve Cognitive function and neuroinflammation
in patients with mild AD
2.0×107 CFU/day for 16 weeks Cyprus NCT06181513
PD Phase 4 Mixture of B. longum, L. acidophilus, E. faecalis On motor symptoms and constipation and sleep in mild to moderate PD ≥1.0×107 CFU/capsule 2 capsules twice daily; Day 15-24 weeks, 4 capsules twice daily China NCT04871464
Phase 3 Mixture of Lactobacillus spp., Bifidobacterium spp., fructo-oligosaccaride On constipation and whole gut transit time in patients with PD 30×109 CFU/day twice daily for 8 weeks Malaysia NCT04451096
Phase 2 Mixture of B. bifidum W23, B. lactis W51, B. lactis W52, L. acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, L. lactis W19, L. lactis W58 Anxiety in patients with PD 5.0×109 CFU/day for 12 weeks Canada NCT03968133
Phase 2 Mixture of B. bifidum W23, B. lactis W51, B. lactis W52, L. acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, L. lactis W19, L. lactis W58 Depression in patients with PD 5.0×109 CFU/day for 12 weeks Canada NCT05568498

AD, Alzheimer’s disease; L. paracasei, Lacticaseibacillus paracasei; L. plantarum, Lactiplantibacillus plantarum; L. rhamnosus, Lacticaseibacillus rhamnosus; L. helveticus, Lactobacillus helveticus; B. breve, Bifidobacterium breve; CFU, colony forming unit; B. longum, Bifidobacterium longum; L. acidophilus, Lactobacillus acidophilus; E. faecalis, Enterococcus faecalis; B. bifidum, Bifidobacterium bifidum; B. lactis, Bifidobacterium animalis subsp. lactis; L. acidophilus, Lactobacillus acidophilus; L. brevis, Levilactobacillus brevis; L. casei, Lacticaseibacillus casei; L. salivarius, Lactobacillus salivarius; L. lactis, Lactococcus lactis.

In the case of PD, a broader range of probiotic formulations are undergoing clinical trials, with one in Phase 4, one in Phase 3, two in Phase 2, and the remainder at “Not applicable.” The Phase 4 trial focused on Bifidobacterium triple viable capsules containing Bifidobacterium longum, L. acidophilus, and Enterococcus faecalis, which are anticipated to improve motor symptoms and alleviate constipation in patients with mild-to-severe PD. The Phase 3 formulation consisted of a probiotic-prebiotic blend that included Lactobacillus spp., Bifidobacterium spp., and fructo-oligosaccharides. These findings reflect a proactive effort to develop NDD treatments using probiotics, with PD receiving a particularly high level of interest following advancements in probiotic formulations, with many treatments currently moving through various trial phases.

CONCLUSIONS AND FUTURE PERSPECTIVES

Overall, in recent years, the MGB axis has emerged as a critical component of the pathophysiology and treatment of NDDs. Increasing evidence suggests that alterations in the gut microbiota can influence neuroinflammation, protein aggregation, and overall neural function, all of which are key factors in the progression of NDD. Probiotics, as modulators of the gut microbiota, offer a unique therapeutic approach, particularly diseases such as AD and PD, for which preclinical and clinical data have shown encouraging results.

More extensive research on the role of the MGB axis in NDDs is crucial, particularly to explore how gut dysbiosis can influence disease onset and progression through mechanisms such as neuroinflammation and immune activation. Additionally, understanding the specific effects of different probiotic strains on the MGB axis will be key to optimizing strain selection and dosage for targeted therapeutic outcomes. Investigations should further focus on the impact of probiotics on gut-derived inflammatory mediators, gut permeability, and their interplay with key pathological markers such as Aβ, tau, α-syn, and TDP-43 across different NDDs.

In conclusion, although significant progress has been made in our understanding of the potential of probiotics to modulate the gut-brain axis, translating these findings into effective NDD therapies will require robust clinical trials and mechanistic insights. With careful optimization of multi-strain formulations and deeper exploration of the MGB axis, probiotics have the potential to redefine therapeutic strategies for NDDs by targeting the microbiome as a core component of neuroprotection.

ACKNOWLEDGMENTS

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2024-00412556). This study was also supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grand number: HI23C1263).

REFERENCES

  1. Abdelhamid M., Jung C. G., Zhou C., Inoue R., Chen Y., Sento Y., Hida H., Michikawa M. Potential therapeutic effects of Bifidobacterium breve MCC1274 on Alzheimer's disease pathologies in app(NL-G-F) mice. Nutrients. 2024;16:538. doi: 10.3390/nu16040538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abdelhamid M., Zhou C., Jung C. G., Michikawa M. Probiotic Bifidobacterium breve MCC1274 mitigates Alzheimer's disease-related pathologies in wild-type mice. Nutrients. 2022a;14:2543. doi: 10.3390/nu14122543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abdelhamid M., Zhou C., Ohno K., Kuhara T., Taslima F., Abdullah M., Jung C. G., Michikawa M. Probiotic Bifidobacterium breve prevents memory impairment through the reduction of both amyloid-beta production and microglia activation in APP knock-in mouse. J. Alzheimers Dis. 2022b;85:1555–1571. doi: 10.3233/JAD-215025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Abu-Elfotuh K., Selim H., Riad O. K. M., Hamdan A. M. E., Hassanin S. O., Sharif A. F., Moustafa N. M., Gowifel A. M. H., Mohamed M. Y. A., Atwa A. M., Zaghlool S. S., El-Din M. N. The protective effects of sesamol and/or the probiotic, Lactobacillus rhamnosus, against aluminum chloride-induced neurotoxicity and hepatotoxicity in rats: Modulation of Wnt/beta-catenin/GSK-3beta, JAK-2/STAT-3, PPAR-gamma, inflammatory, and apoptotic pathways. Front. Pharmacol. 2023;14:1208252. doi: 10.3389/fphar.2023.1208252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Adamske D., Heyduck A., Weidenmuller M., Goricke B., Frank T., Olthoff A. Dysphagia in amyotrophic lateral sclerosis: Quantification of bulbar motor dysfunction. J. Oral. Rehabil. 2021;48:1044–1049. doi: 10.1111/joor.13220. [DOI] [PubMed] [Google Scholar]
  6. Agahi A., Hamidi G. A., Daneshvar R., Hamdieh M., Soheili M., Alinaghipour A., Esmaeili Taba S. M., Salami M. Does severity of Alzheimer's disease contribute to its responsiveness to modifying gut microbiota? A double blind clinical trial. Front. Neurol. 2018;9:662. doi: 10.3389/fneur.2018.00662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Akbari E., Asemi Z., Daneshvar Kakhaki R., Bahmani F., Kouchaki E., Tamtaji O. R., Hamidi G. A., Salami M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Front. Aging Neurosci. 2016;8:256. doi: 10.3389/fnagi.2016.00256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Akhgarjand C., Vahabi Z., Shab-Bidar S., Anoushirvani A., Djafarian K. The effects of probiotic supplements on oxidative stress and inflammation in subjects with mild and moderate Alzheimer's disease: a randomized, double-blind, placebo-controlled study. Inflammopharmacology. 2024;32:1413–1420. doi: 10.1007/s10787-023-01427-2. [DOI] [PubMed] [Google Scholar]
  9. Akhgarjand C., Vahabi Z., Shab-Bidar S., Etesam F., Djafarian K. Effects of probiotic supplements on cognition, anxiety, and physical activity in subjects with mild and moderate Alzheimer's disease: a randomized, double-blind, and placebo-controlled study. Front. Aging Neurosci. 2022;14:1032494. doi: 10.3389/fnagi.2022.1032494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Aktas B., Aslim B., Ozdemir D. A. A neurotherapeutic approach with Lacticaseibacillus rhamnosus E9 on gut microbiota and intestinal barrier in MPTP-induced mouse model of Parkinson's disease. Sci. Rep. 2024;14:15460. doi: 10.1038/s41598-024-65061-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Alipour Nosrani E., Tamtaji O. R., Alibolandi Z., Sarkar P., Ghazanfari M., Azami Tameh A., Taghizadeh M., Banikazemi Z., Hadavi R., Naderi Taheri M. Neuroprotective effects of probiotics bacteria on animal model of Parkinson's disease induced by 6-hydroxydopamine: a behavioral, biochemical, and histological study. J. Immunoassay Immunochem. 2021;42:106–120. doi: 10.1080/15321819.2020.1833917. [DOI] [PubMed] [Google Scholar]
  12. Antony P. M., Diederich N. J., Kruger R., Balling R. The hallmarks of Parkinson's disease. FEBS J. 2013;280:5981–5993. doi: 10.1111/febs.12335. [DOI] [PubMed] [Google Scholar]
  13. Asaoka D., Xiao J., Takeda T., Yanagisawa N., Yamazaki T., Matsubara Y., Sugiyama H., Endo N., Higa M., Kasanuki K., Ichimiya Y., Koido S., Ohno K., Bernier F., Katsumata N., Nagahara A., Arai H., Ohkusa T., Sato N. Effect of probiotic bifidobacterium breve in improving cognitive function and preventing brain atrophy in older patients with suspected mild cognitive impairment: results of a 24-week randomized, double-blind, placebo-controlled trial. J. Alzheimers Dis. 2022;88:75–95. doi: 10.3233/JAD-220148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Athari Nik Azm S., Djazayeri A., Safa M., Azami K., Ahmadvand B., Sabbaghziarani F., Sharifzadeh M., Vafa M. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in beta-amyloid (1-42) injected rats. Appl. Physiol. Nutr. Metab. 2018;43:718–726. doi: 10.1139/apnm-2017-0648. [DOI] [PubMed] [Google Scholar]
  15. Balaguer F., Barrena M., Enrique M., Maicas M., Alvarez B., Tortajada M., Chenoll E., Ramon D., Martorell P. Bifidobacterium animalis subsp. lactis BPL1 and its lipoteichoic acid modulate longevity and improve age/stress-related behaviors in Caenorhabditis elegans. Antioxidants (Basel) 2023;12:2107. doi: 10.3390/antiox12122107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Barichella M., Pacchetti C., Bolliri C., Cassani E., Iorio L., Pusani C., Pinelli G., Privitera G., Cesari I., Faierman S.A., Caccialanza R., Pezzoli G., Cereda E. Probiotics and prebiotic fiber for constipation associated with Parkinson disease: an RCT. Neurology. 2016;87:1274–1280. doi: 10.1212/WNL.0000000000003127. [DOI] [PubMed] [Google Scholar]
  17. Bartos A., Weinerova J., Diondet S. Effects of human probiotics on memory and psychological and physical measures in community-dwelling older adults with normal and mildly impaired cognition: results of a bi-center, double-blind, randomized, and placebo-controlled clinical trial (CleverAge biota) Front. Aging Neurosci. 2023;15:1163727. doi: 10.3389/fnagi.2023.1163727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Beltagy D. M., Nawar N. F., Mohamed T. M., Tousson E., El-Keey M. M. Beneficial consequences of probiotic on mitochondrial hippocampus in Alzheimer's disease. J. Complement. Integr. Med. 2021;18:761–767. doi: 10.1515/jcim-2020-0156. [DOI] [PubMed] [Google Scholar]
  19. Bernier F., Kuhara T., Xiao J. Probiotic Bifidobacterium breve MCC1274 protects against oxidative stress and neuronal lipid droplet formation via PLIN4 gene regulation. Microorganisms. 2023;11:791. doi: 10.3390/microorganisms11030791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Bernier F., Ohno K., Katsumata N., Shimizu T., Xiao J. Association of plasma hemoglobin A1c with improvement of cognitive functions by probiotic Bifidobacterium breve supplementation in healthy adults with mild cognitive impairment. J. Alzheimers Dis. 2021;81:493–497. doi: 10.3233/JAD-201488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bonfili L., Cecarini V., Cuccioloni M., Angeletti M., Berardi S., Scarpona S., Rossi G., Eleuteri A. M. SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol. Neurobiol. 2018;55:7987–8000. doi: 10.1007/s12035-018-0973-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bonfili L., Cecarini V., Gogoi O., Berardi S., Scarpona S., Angeletti M., Rossi G., Eleuteri A. M. Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer's disease. Neurobiol. Aging. 2020;87:35–43. doi: 10.1016/j.neurobiolaging.2019.11.004. [DOI] [PubMed] [Google Scholar]
  23. Bonfili L., Gong C., Lombardi F., Cifone M. G., Eleuteri A. M. Strategic modification of gut microbiota through oral bacteriotherapy influences hypoxia inducible factor-1alpha: therapeutic implication in Alzheimer's disease. Int. J. Mol. Sci. 2021;23:357. doi: 10.3390/ijms23010357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Borzabadi S., Oryan S., Eidi A., Aghadavod E., Daneshvar Kakhaki R., Tamtaji O. R., Taghizadeh M., Asemi Z. The effects of probiotic supplementation on gene expression related to inflammation, insulin and lipid in patients with Parkinson's disease: a randomized, double-blind, placebocontrolled trial. Arch. Iran. Med. 2018;21:289–295. [PubMed] [Google Scholar]
  25. Boxer A. L., Sperling R. Accelerating Alzheimer's therapeutic development: the past and future of clinical trials. Cell. 2023;186:4757–4772. doi: 10.1016/j.cell.2023.09.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Braak H., Rub U., Gai W.P., Del Tredici K. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. (Vienna) 2003;110:517–536. doi: 10.1007/s00702-002-0808-2. [DOI] [PubMed] [Google Scholar]
  27. Cao J., Amakye W. K., Qi C., Liu X., Ma J., Ren J. Bifidobacterium Lactis Probio-M8 regulates gut microbiota to alleviate Alzheimer's disease in the APP/PS1 mouse model. Eur. J. Nutr. 2021;60:3757–3769. doi: 10.1007/s00394-021-02543-x. [DOI] [PubMed] [Google Scholar]
  28. Cassir N., Benamar S., La Scola B. Clostridium butyricum: from beneficial to a new emerging pathogen. Clin. Microbiol. Infect. 2016;22:37–45. doi: 10.1016/j.cmi.2015.10.014. [DOI] [PubMed] [Google Scholar]
  29. Castelli V., Angelo M., Lombardi F., Alfonsetti M., Antonosante A., Catanesi M., Benedetti E., Palumbo P., Cifone M. G., Giordano A., Desideri G., Cimini A. Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson's disease models. Aging (Albany N.Y.) 2020;12:4641–4659. doi: 10.18632/aging.102927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Chakamian K., Robat-Jazi B., Naser Moghadasi A., Mansouri F., Nodehi M., Motevaseli E., Izad M., Yekaninejad S., Shirzad M., Bidad K., Oraei M., Ansaripour B., Saboor-Yaraghi A. A. Immunosuppressive effects of two probiotics, Lactobacillus paracasei DSM 13434 and Lactobacillus plantarum DSM 15312, on CD4+ T cells of multiple sclerosis patients. Iran. J. Allergy Asthma Immunol. 2023;22:34–45. doi: 10.18502/ijaai.v22i1.12004. [DOI] [PubMed] [Google Scholar]
  31. Chen H., Ma X., Liu Y., Ma L., Chen Z., Lin X., Si L., Ma X., Chen X. Gut microbiota interventions with Clostridium butyricum and norfloxacin modulate immune response in experimental autoimmune encephalomyelitis mice. Front. Immunol. 2019;10:1662. doi: 10.3389/fimmu.2019.01662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Cheon M. J., Lee N. K., Paik H. D. Neuroprotective effects of heat-killed Lactobacillus plantarum 200655 isolated from kimchi against oxidative stress. Probiotics Antimicrob. Proteins. 2021;13:788–795. doi: 10.1007/s12602-020-09740-w. [DOI] [PubMed] [Google Scholar]
  33. Chidambaram S. B., Essa M. M., Rathipriya A. G., Bishir M., Ray B., Mahalakshmi A. M., Tousif A. H., Sakharkar M. K., Kashyap R. S., Friedland R. P., Monaghan T. M. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: tales of a vicious cycle. Pharmacol. Ther. 2022;231:107988. doi: 10.1016/j.pharmthera.2021.107988. [DOI] [PubMed] [Google Scholar]
  34. Choi J. G., Kim N., Ju I. G., Eo H., Lim S. M., Jang S. E., Kim D. H., Oh M. S. Oral administration of Proteus mirabilis damages dopaminergic neurons and motor functions in mice. Sci. Rep. 2018;8:1275. doi: 10.1038/s41598-018-19646-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Choi J. K., Kwon O. Y., Lee S. H. Oral administration of Bifidobacterium lactis ameliorates cognitive deficits in mice intracerebroventricularly administered amyloid beta via regulation the activation of mitogen-activated protein kinases. Food Sci. Anim. Resour. 2024;44:607–619. doi: 10.5851/kosfa.2024.e5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Chu C., Yu L., Li Y., Guo H., Zhai Q., Chen W., Tian F. Lactobacillus plantarum CCFM405 against rotenone-induced Parkinson's disease mice via regulating gut microbiota and branched-chain amino acids biosynthesis. Nutrients. 2023;15:1737. doi: 10.3390/nu15071737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Chung Y., Kang S. B., Son D., Lee J. Y., Chung M. J., Lim S. Characterization of the probiotic properties of Lacticaseibacillus rhamnosus LR6 isolated from the vaginas of healthy Korean women against vaginal pathogens. Front. Microbiol. 2023;14:1308293. doi: 10.3389/fmicb.2023.1308293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Correale J., Gaitan M. I., Ysrraelit M. C., Fiol M. P. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain. 2017;140:527–546. doi: 10.1093/brain/aww258. [DOI] [PubMed] [Google Scholar]
  39. Cuevas-Carbonell S. G., Vasquez-Celaya L., Garcia-Lopez D., Granados-Patron D., Garcia-Miss M. D. R., Alvarez-Cervera F. J., Mut-Martin M., Parra I., Mendieta L., Salgado H., Alamilla J., Cruz-Bojorquez R., Avila-Escalante M. L., Aranda G., II, Gongora-Alfaro J. L. Chronic treatment with the probiotics Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis BB12 attenuates motor impairment, striatal microglial activation, and dopaminergic loss in rats with 6-hydroxydopamine-induced hemiparkinsonism. Neuroscience. 2022;507:79–98. doi: 10.1016/j.neuroscience.2022.11.004. [DOI] [PubMed] [Google Scholar]
  40. Dalile B., Van Oudenhove L., Vervliet B., Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019;16:461–478. doi: 10.1038/s41575-019-0157-3. [DOI] [PubMed] [Google Scholar]
  41. Dar K. B., Bhat A. H., Amin S., Reshi B. A., Zargar M. A., Masood A., Ganie S. A. Elucidating critical proteinopathic mechanisms and potential drug targets in neurodegeneration. Cell. Mol. Neurobiol. 2020;40:313–345. doi: 10.1007/s10571-019-00741-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Dargahi N., Matsoukas J., Apostolopoulos V. Streptococcus thermophilus ST285 alters pro-inflammatory to anti-inflammatory cytokine secretion against multiple sclerosis peptide in mice. Brain Sci. 2020;10:126. doi: 10.3390/brainsci10020126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Deng S. M., Chen C. J., Lin H. L., Cheng I. H. The beneficial effect of synbiotics consumption on Alzheimer's disease mouse model via reducing local and systemic inflammation. IUBMB Life. 2022;74:748–753. doi: 10.1002/iub.2589. [DOI] [PubMed] [Google Scholar]
  44. Di Salvo C., D'Antongiovanni V., Benvenuti L., Amati A., Ippolito C., Segnani C., Pierucci C., Bellini G., Annese T., Virgintino D., Colucci R., Antonioli L., Fornai M., Errede M., Bernardini N., Pellegrini C. Lactiplantibacillus plantarum HEAL9 attenuates cognitive impairment and progression of Alzheimer's disease and related bowel symptoms in SAMP8 mice by modulating microbiota-gut-inflammasome-brain axis. Food Funct. 2024;15:10323–10338. doi: 10.1039/D4FO02075H. [DOI] [PubMed] [Google Scholar]
  45. Digehsara S. G., Name N., Sartipnia N., Karim E., Taheri S., Ebrahimi M. T., Arasteh J. Analysis of inflammasomes and CYP27B1 genes in cuprizone demyelinated C57BL/6 mice and evaluation of Th1 and Th2 patterns after oral administration of Lactobacillus casei strain T2 (IBRC-M10783) Microb. Pathog. 2021;155:104931. doi: 10.1016/j.micpath.2021.104931. [DOI] [PubMed] [Google Scholar]
  46. Ding C., Wu Y., Chen X., Chen Y., Wu Z., Lin Z., Kang D., Fang W., Chen F. Global, regional, and national burden and attributable risk factors of neurological disorders: The Global Burden of Disease study 1990-2019. Front. Public Health. 2022;10:952161. doi: 10.3389/fpubh.2022.952161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Drucker D. J. Gut adaptation and the glucagon-like peptides. Gut. 2002;50:428–435. doi: 10.1136/gut.50.3.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Du Y., Li Y., Xu X., Li R., Zhang M., Cui Y., Zhang L., Wei Z., Wang S., Tuo H. Probiotics for constipation and gut microbiota in Parkinson's disease. Parkinsonism Relat. Disord. 2022;103:92–97. doi: 10.1016/j.parkreldis.2022.08.022. [DOI] [PubMed] [Google Scholar]
  49. Dunalska A., Saramak K., Szejko N. The role of gut microbiome in the pathogenesis of multiple sclerosis and related disorders. Cells. 2023;12:1760. doi: 10.3390/cells12131760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Fan H. X., Sheng S., Li D. D., Li J. J., Wang G. Q., Zhang F. Heat-killed Lactobacillus murinus confers neuroprotection against dopamine neuronal loss by targeting NLRP3 inflammasome. Bioeng. Transl. Med. 2023;8:e10455. doi: 10.1002/btm2.10455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Fang X., Zhou X., Miao Y., Han Y., Wei J., Chen T. Therapeutic effect of GLP-1 engineered strain on mice model of Alzheimer's disease and Parkinson's disease. AMB Express. 2020;10:80. doi: 10.1186/s13568-020-01014-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Fei Y., Wang R., Lu J., Peng S., Yang S., Wang Y., Zheng K., Li R., Lin L., Li M. Probiotic intervention benefits multiple neural behaviors in older adults with mild cognitive impairment. Geriatr. Nurs. 2023;51:167–175. doi: 10.1016/j.gerinurse.2023.03.006. [DOI] [PubMed] [Google Scholar]
  53. Foster S. G., Mathew S., Labarre A., Parker J. A., Tompkins T. A., Binda S. Lacticaseibacillus rhamnosus HA-114 and Bacillus subtilis R0179 prolong lifespan and mitigate amyloid-beta toxicity in C. elegans via distinct mechanisms. J. Alzheimers Dis. 2024;101:49–60. doi: 10.3233/JAD-230948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Fulling C., Dinan T. G., Cryan J. F. Gut microbe to brain signaling: what happens in vagus. Neuron. 2019;101:998–1002. doi: 10.1016/j.neuron.2019.02.008. [DOI] [PubMed] [Google Scholar]
  55. Gadhave D. G., Sugandhi V. V., Jha S. K., Nangare S. N., Gupta G., Singh S. K., Dua K., Cho H., Hansbro P. M., Paudel K. R. Neurodegenerative disorders: mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res. Rev. 2024;99:102357. doi: 10.1016/j.arr.2024.102357. [DOI] [PubMed] [Google Scholar]
  56. Gao H., Li X., Chen X., Hai D., Wei C., Zhang L., Li P. The functional roles of Lactobacillus acidophilus in different physiological and pathological processes. J. Microbiol. Biotechnol. 2022;32:1226–1233. doi: 10.4014/jmb.2205.05041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Garg N., Smith T. W. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav. 2015;5:e00362. doi: 10.1002/brb3.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Ghalandari N., Assarzadegan F., Habibi S. A. H., Esmaily H., Malekpour H. Efficacy of probiotics in improving motor function and alleviating constipation in Parkinson's disease: a randomized controlled trial. Iran. J. Pharm. Res. 2023;22:e137840. doi: 10.5812/ijpr-137840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Gharehkhani Digehsara S., Name N., Esfandiari B., Karim E., Taheri S., Tajabadi-Ebrahimi M., Arasteh J. Effects of Lactobacillus casei strain T2 (IBRC-M10783) on the modulation of Th17/Treg and evaluation of miR-155, miR-25, and IDO-1 expression in a cuprizone-induced C57BL/6 mouse model of demyelination. Inflammation. 2021;44:334–343. doi: 10.1007/s10753-020-01339-1. [DOI] [PubMed] [Google Scholar]
  60. Ghyselinck J., Verstrepen L., Moens F., Van Den Abbeele P., Bruggeman A., Said J., Smith B., Barker L. A., Jordan C., Leta V., Chaudhuri K. R., Basit A. W., Gaisford S. Influence of probiotic bacteria on gut microbiota composition and gut wall function in an in-vitro model in patients with Parkinson's disease. Int. J. Pharm. X. 2021;3:100087. doi: 10.1016/j.ijpx.2021.100087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Gribble F. M., Reimann F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 2016;78:277–299. doi: 10.1146/annurev-physiol-021115-105439. [DOI] [PubMed] [Google Scholar]
  62. Gupta R., Advani D., Yadav D., Ambasta R. K., Kumar P. Dissecting the relationship between neuropsychiatric and neurodegenerative disorders. Mol. Neurobiol. 2023;60:6476–6529. doi: 10.1007/s12035-023-03502-9. [DOI] [PubMed] [Google Scholar]
  63. Hamid M., Zahid S. Ameliorative effects of probiotics in AlCl(3)-induced mouse model of Alzheimer's disease. Appl. Microbiol. Biotechnol. 2023;107:5803–5812. doi: 10.1007/s00253-023-12686-y. [DOI] [PubMed] [Google Scholar]
  64. Haran J. P., Bhattarai S. K., Foley S. E., Dutta P., Ward D. V., Bucci V., McCormick B. A. Alzheimer's disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. mBio. 2019;10:e00632–19. doi: 10.1128/mBio.00632-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Hardiman O., Al-Chalabi A., Chio A., Corr E. M., Logroscino G., Robberecht W., Shaw P. J., Simmons Z., van den Berg L. H. Amyotrophic lateral sclerosis. Mol. Neurobiol. 2017;61:17071. doi: 10.1038/nrdp.2017.71. [DOI] [PubMed] [Google Scholar]
  66. Hasaniani N., Ghasemi-Kasman M., Halaji M., Rostami-Mansoor S. Bifidobacterium breve probiotic compared to Lactobacillus casei causes a better reduction in demyelination and oxidative stress in cuprizone-induced demyelination model of rat. Mol. Neurobiol. 2024;61:498–509. doi: 10.1007/s12035-023-03593-4. [DOI] [PubMed] [Google Scholar]
  67. Hawrysh P. J., Gao J., Tan S., Oh A., Nodwell J., Tompkins T. A., McQuibban G. A. PRKN/parkin-mediated mitophagy is induced by the probiotics Saccharomyces boulardii and Lactococcus lactis. Autophagy. 2023;19:2094–2110. doi: 10.1080/15548627.2023.2172873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. He B., Hoang T. K., Tian X., Taylor C. M., Blanchard E., Luo M., Bhattacharjee M. B., Freeborn J., Park S., Couturier J., Lindsey J. W., Tran D. Q., Rhoads J. M., Liu Y. Lactobacillus reuteri reduces the severity of experimental autoimmune encephalomyelitis in mice by modulating gut microbiota. Front. Immunol. 2019;10:385. doi: 10.3389/fimmu.2019.00385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. He X., Yan C., Zhao S., Zhao Y., Huang R., Li Y. The preventive effects of probiotic Akkermansia muciniphila on D-galactose/AlCl3 mediated Alzheimer's disease-like rats. Exp. Gerontol. 2022;170:111959. doi: 10.1016/j.exger.2022.111959. [DOI] [PubMed] [Google Scholar]
  70. He Y., Zhao J., Ma Y., Yan X., Duan Y., Zhang X., Dong H., Fang R., Zhang Y., Li Q., Yang P., Yu M., Fei J., Huang F. Citrobacter rodentium infection impairs dopamine metabolism and exacerbates the pathology of Parkinson's disease in mice. J. Neuroinflammation. 2024;21:153. doi: 10.1186/s12974-024-03145-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Heemels M. T. Neurodegenerative diseases. Nature. 2016;539:179. doi: 10.1038/539179a. [DOI] [PubMed] [Google Scholar]
  72. Hertzberg V. S., Singh H., Fournier C. N., Moustafa A., Polak M., Kuelbs C. A., Torralba M. G., Tansey M. G., Nelson K. E., Glass J. D. Gut microbiome differences between amyotrophic lateral sclerosis patients and spouse controls. Amyotroph. Lateral Scler. Frontotemporal Degener. 2022;23:91–99. doi: 10.1080/21678421.2021.1904994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Heydari R., Khosravifar M., Abiri S., Dashtbin S., Alvandi A., Nedaei S.E., Salimi Z., Zarei F., Abiri R. A domestic strain of Lactobacillus rhamnosus attenuates cognitive deficit and pro-inflammatory cytokine expression in an animal model of Alzheimer's disease. Behav. Brain Res. 2025;476:115277. doi: 10.1016/j.bbr.2024.115277. [DOI] [PubMed] [Google Scholar]
  74. Hirayama M., Nishiwaki H., Hamaguchi T., Ohno K. Gastrointestinal disorders in Parkinson's disease and other Lewy body diseases. NPJ Parkinsons Dis. 2023;9:71. doi: 10.1038/s41531-023-00511-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Hsieh T. H., Kuo C. W., Hsieh K. H., Shieh M. J., Peng C. W., Chen Y. C., Chang Y. L., Huang Y. Z., Chen C. C., Chang P. K., Chen K. Y., Chen H. Y. Probiotics alleviate the progressive deterioration of motor functions in a mouse model of Parkinson's disease. Brain Sci. 2020;10:206. doi: 10.3390/brainsci10040206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Hsu Y. C., Huang Y. Y., Tsai S. Y., Kuo Y. W., Lin J. H., Ho H. H., Chen J. F., Hsia K. C., Sun Y. Efficacy of probiotic supplements on brain-derived neurotrophic factor, inflammatory biomarkers, oxidative stress and cognitive function in patients with Alzheimer's dementia: a 12-week randomized, double-blind active-controlled study. Nutrients. 2023;16:16. doi: 10.3390/nu16010016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Hu F., Gao Q., Zheng C., Zhang W., Yang Z., Wang S., Zhang Y., Lu T. Encapsulated lactiplantibacillus plantarum improves Alzheimer's symptoms in APP/PS1 mice. J. Nanobiotechnology. 2024a;22:582. doi: 10.1186/s12951-024-02862-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Hu X., Chen F., Jia L., Long A., Peng Y., Li X., Huang J., Wei X., Fang X., Gao Z., Zhang M., Liu X., Chen Y.G., Wang Y., Zhang H., Wang Y. A gut-derived hormone regulates cholesterol metabolism. Cell. 2024b;187:1685–1700.e18. doi: 10.1016/j.cell.2024.02.024. [DOI] [PubMed] [Google Scholar]
  79. Huang C. H., Li S. W., Huang L., Watanabe K. Identification and classification for the Lactobacillus casei group. Front. Microbiol. 2018;9:1974. doi: 10.3389/fmicb.2018.01974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Huang Y., Li Y., Pan H., Han L. Global, regional, and national burden of neurological disorders in 204 countries and territories worldwide. J. Glob. Health. 2023;13:04160. doi: 10.7189/jogh.13.04160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Huh E., Choi J. G., Choi Y., Ju I. G., Kim B., Shin Y. J., An J. M., Park M. G., Yim S. V., Chung S. J., Seo S. U., Kim D., Kim C. H., Kim D. H., Oh M. S. P. mirabilis-derived pore-forming haemolysin, HpmA drives intestinal alpha-synuclein aggregation in a mouse model of neurodegeneration. EBioMedicine. 2023;98:104887. doi: 10.1016/j.ebiom.2023.104887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Ibrahim A., Ali R. A. R., Manaf M. R. A., Ahmad N., Tajurruddin F. W., Qin W. Z., Desa S. H. M., Ibrahim N. M. Multi-strain probiotics (Hexbio) containing MCP BCMC strains improved constipation and gut motility in Parkinson's disease: a randomised controlled trial. PLoS One. 2020;15:e0244680. doi: 10.1371/journal.pone.0244680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Ilie O. D., Duta R., Balmus I. M., Savuca A., Petrovici A., Nita I. B., Antoci L. M., Jijie R., Mihai C. T., Ciobica A., Nicoara M., Popescu R., Dobrin R., Solcan C., Trifan A., Stanciu C., Doroftei B. Assessing the neurotoxicity of a sub-optimal dose of rotenone in zebrafish (Danio rerio) and the possible neuroactive potential of valproic acid, combination of levodopa and carbidopa, and lactic acid bacteria strains. Antioxidants (Basel) 2022;11:2040. doi: 10.3390/antiox11102040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. iMSMS Consortium Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course. Cell. 2022;185:3467–3486.e16. doi: 10.1016/j.cell.2022.08.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Ishii T., Furuoka H., Kaya M., Kuhara T. Oral administration of probiotic Bifidobacterium breve improves facilitation of hippocampal memory extinction via restoration of aberrant higher induction of neuropsin in an MPTP-induced mouse model of Parkinson's disease. Biomedicines. 2021;9:167. doi: 10.3390/biomedicines9020167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Jin J., Xu Z., Zhang L., Zhang C., Zhao X., Mao Y., Zhang H., Liang X., Wu J., Yang Y., Zhang J. Gut-derived beta-amyloid: Likely a centerpiece of the gut-brain axis contributing to Alzheimer's pathogenesis. Gut Microbes. 2023;15:2167172. doi: 10.1080/19490976.2023.2167172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Johanson D. M., Goertz J. E., Marin I. A., Costello J., Overall C. C., Gaultier A. Experimental autoimmune encephalomyelitis is associated with changes of the microbiota composition in the gastrointestinal tract. Sci. Rep. 2020;10:15183. doi: 10.1038/s41598-020-72197-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Kalia L. V., Lang A. E. Parkinson's disease. Lancet. 2015;386:896–912. doi: 10.1016/S0140-6736(14)61393-3. [DOI] [PubMed] [Google Scholar]
  89. Kaur H., Golovko S., Golovko M. Y., Singh S., Darland D. C., Combs C. K. Effects of probiotic supplementation on short chain fatty acids in the AppNL-G-F mouse model of Alzheimer's disease. J. Alzheimers Dis. 2020;76:1083–1102. doi: 10.3233/JAD-200436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Kesika P., Suganthy N., Sivamaruthi B. S., Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer's disease. Life Sci. 2021;264:118627. doi: 10.1016/j.lfs.2020.118627. [DOI] [PubMed] [Google Scholar]
  91. Khan S., Barve K. H., Kumar M. S. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer's disease. Curr. Neuropharmacol. 2020;18:1106–1125. doi: 10.2174/1570159X18666200528142429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Kim C. S., Cha L., Sim M., Jung S., Chun W. Y., Baik H. W., Shin D. M. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial. J. Gerontol. A Biol. Sci. Med. Sci. 2021a;76:32–40. doi: 10.1093/gerona/glaa090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Kim H., Kim S., Park S. J., Park G., Shin H., Park M. S., Kim J. Administration of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI improves cognitive and memory function in the mouse model of Alzheimer's disease. Front. Aging Neurosci. 2021b;13:709091. doi: 10.3389/fnagi.2021.709091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Kim H. S., Son J., Lee D., Tsai J., Wang D., Chocron E. S., Jeong S., Kittrell P., Murchison C. F., Kennedy R. E., Tobon A., Jackson C. E., Pickering A. M. Gut- and oral-dysbiosis differentially impact spinal- and bulbar-onset ALS, predicting ALS severity and potentially determining the location of disease onset. BMC Neurol. 2022;22:62. doi: 10.1186/s12883-022-02586-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Kim S., Kwon S. H., Kam T. I., Panicker N., Karuppagounder S. S., Lee S., Lee J. H., Kim W. R., Kook M., Foss C. A., Shen C., Lee H., Kulkarni S., Pasricha P. J., Lee G., Pomper M. G., Dawson V.L., Dawson T. M., Ko H. S. Transneuronal propagation of pathologic alpha-synuclein from the gut to the brain models Parkinson's disease. Neuron. 2019;103:627–641.e7. doi: 10.1016/j.neuron.2019.05.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Kim Y. J., Mun B. R., Choi K. Y., Choi W. S. Oral administration of probiotic bacteria alleviates tau phosphorylation, abeta accumulation, microglia activation, and memory loss in 5xFAD mice. Brain Sci. 2024;14:208. doi: 10.3390/brainsci14030208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Kim Y. S., Joh T. H. Matrix metalloproteinases, new insights into the understanding of neurodegenerative disorders. Biomol. Ther. (Seoul) 2012;20:133–143. doi: 10.4062/biomolther.2012.20.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Kobayashi Y., Kinoshita T., Oki M., Matsumoto A., Yoshino K., Saito I., Xiao J. Z. Bifidobacterium breve A1 supplementation improved cognitive decline in older adults with mild cognitive impairment: an open-label, single-arm study. J. Prev. Alzheimers Dis. 2019a;6:70–75. doi: 10.14283/jpad.2018.32. [DOI] [PubMed] [Google Scholar]
  99. Kobayashi Y., Kuhara T., Oki M., Xiao J. Z. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Benef. Microbes. 2019b;10:511–520. doi: 10.3920/BM2018.0170. [DOI] [PubMed] [Google Scholar]
  100. Kobayashi Y., Sugahara H., Shimada K., Mitsuyama E., Kuhara T., Yasuoka A., Kondo T., Abe K., Xiao J. Z. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Sci. Rep. 2017;7:13510. doi: 10.1038/s41598-017-13368-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Kostrzewa R. M., Segura-Aguilar J. Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. a review. Neurotox. Res. 2003;5:375–383. doi: 10.1007/BF03033166. [DOI] [PubMed] [Google Scholar]
  102. Kouchaki E., Tamtaji O. R., Salami M., Bahmani F., Daneshvar Kakhaki R., Akbari E., Tajabadi-Ebrahimi M., Jafari P., Asemi Z. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2017;36:1245–1249. doi: 10.1016/j.clnu.2016.08.015. [DOI] [PubMed] [Google Scholar]
  103. Kumaree K. K., Prasanth M. I., Sivamaruthi B. S., Kesika P., Tencomnao T., Chaiyasut C., Prasansuklab A. Lactobacillus paracasei HII01 enhances lifespan and promotes neuroprotection in Caenorhabditis elegans. Sci. Rep. 2023;13:16707. doi: 10.1038/s41598-023-43846-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Kwoji I. D., Aiyegoro O. A., Okpeku M., Adeleke M. A. Multi-strain probiotics: synergy among isolates enhances biological activities. Biology (Basel) 2021;10:322. doi: 10.3390/biology10040322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Labarre A., Guitard E., Tossing G., Forest A., Bareke E., Labrecque M., Tetreault M., Ruiz M., Alex Parker J. Fatty acids derived from the probiotic Lacticaseibacillus rhamnosus HA-114 suppress age-dependent neurodegeneration. Commun. Biol. 2022;5:1340. doi: 10.1038/s42003-022-04295-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Lana D., Traini C., Bulli I., Sarti G., Magni G., Attorre S., Giovannini M. G., Vannucchi M. G. Chronic administration of prebiotics and probiotics ameliorates pathophysiological hallmarks of Alzheimer's disease in a APP/PS1 transgenic mouse model. Front. Pharmacol. 2024;15:1451114. doi: 10.3389/fphar.2024.1451114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Latif A., Shehzad A., Niazi S., Zahid A., Ashraf W., Iqbal M. W., Rehman A., Riaz T., Aadil R. M., Khan I. M., Ozogul F., Rocha J. M., Esatbeyoglu T., Korma S. A. Probiotics: mechanism of action, health benefits and their application in food industries. Front. Microbiol. 2023;14:1216674. doi: 10.3389/fmicb.2023.1216674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Laursen M. F., Sakanaka M., von Burg N., Morbe U., Andersen D., Moll J.M., Pekmez C. T., Rivollier A., Michaelsen K. F., Molgaard C., Lind M. V., Dragsted L. O., Katayama T., Frandsen H. L., Vinggaard A. M., Bahl M. I., Brix S., Agace W., Licht T. R., Roager H. M. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat. Microbiol. 2021;6:1367–1382. doi: 10.1038/s41564-021-00970-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Lavasani S., Dzhambazov B., Nouri M., Fak F., Buske S., Molin G., Thorlacius H., Alenfall J., Jeppsson B., Westrom B. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS One. 2010;5:e9009. doi: 10.1371/journal.pone.0009009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Lee A., Henderson R., Aylward J., McCombe P. Gut symptoms, gut dysbiosis and gut-derived toxins in ALS. Int. J. Mol. Sci. 2024;25:1871. doi: 10.3390/ijms25031871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Lee D. Y., Shin Y. J., Kim J. K., Jang H. M., Joo M. K., Kim D. H. Alleviation of cognitive impairment by gut microbiota lipopolysaccharide production-suppressing Lactobacillus plantarum and Bifidobacterium longum in mice. Food Funct. 2021a;12:10750–10763. doi: 10.1039/D1FO02167B. [DOI] [PubMed] [Google Scholar]
  112. Lee H. J., Lee K. E., Kim J. K., Kim D. H. Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice. Sci. Rep. 2019;9:11814. doi: 10.1038/s41598-019-48342-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Lee J., Madhavan A., Krajewski E., Lingenfelter S. Assessment of dysarthria and dysphagia in patients with amyotrophic lateral sclerosis: review of the current evidence. Muscle Nerve. 2021b;64:520–531. doi: 10.1002/mus.27361. [DOI] [PubMed] [Google Scholar]
  114. Lee S., Eom S., Lee J., Pyeon M., Kim K., Choi K. Y., Lee J. H., Shin D. J., Lee K. H., Oh S., Lee J. H. Probiotics that ameliorate cognitive impairment through anti-inflammation and anti-oxidation in mice. Food Sci. Anim. Resour. 2023;43:612–624. doi: 10.5851/kosfa.2023.e22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Li T., Chu C., Yu L., Zhai Q., Wang S., Zhao J., Zhang H., Chen W., Tian F. Neuroprotective effects of Bifidobacterium breve CCFM1067 in MPTP-induced mouse models of Parkinson's disease. Nutrients. 2022;14:4678. doi: 10.3390/nu14214678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Li X., Zheng P., Cao W., Cao Y., She X., Yang H., Ma K., Wu F., Gao X., Fu Y., Yin J., Wei F., Jiang S., Cui B. Lactobacillus rhamnosus GG ameliorates noise-induced cognitive deficits and systemic inflammation in rats by modulating the gut-brain axis. Front. Cell. Infect. Microbiol. 2023;13:1067367. doi: 10.3389/fcimb.2023.1067367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Lin C. H., Chen C. C., Chiang H. L., Liou J. M., Chang C. M., Lu T. P., Chuang E. Y., Tai Y. C., Cheng C., Lin H. Y., Wu M. S. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson's disease. J. Neuroinflammation. 2019;16:129. doi: 10.1186/s12974-019-1528-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Ling Z., Cheng Y., Yan X., Shao L., Liu X., Zhou D., Zhang L., Yu K., Zhao L. Alterations of the fecal microbiota in Chinese patients with multiple sclerosis. Front. Immunol. 2020;11:590783. doi: 10.3389/fimmu.2020.590783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Liu S., Gao J., Zhu M., Liu K., Zhang H. L. Gut microbiota and dysbiosis in Alzheimer's disease: implications for pathogenesis and treatment. Mol. Neurobiol. 2020;57:5026–5043. doi: 10.1007/s12035-020-02073-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Lu C. S., Chang H. C., Weng Y. H., Chen C. C., Kuo Y. S., Tsai Y. C. The add-on effect of Lactobacillus plantarum PS128 in Patients with Parkinson's disease: a pilot study. Front. Nutr. 2021;8:650053. doi: 10.3389/fnut.2021.650053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Ma X., Kim J. K., Shin Y. J., Son Y. H., Lee D. Y., Park H. S., Kim D. H. Alleviation of cognitive impairment-like behaviors, neuroinflammation, colitis, and gut dysbiosis in 5xFAD transgenic and aged mice by Lactobacillus mucosae and Bifidobacterium longum. Nutrients. 2023a;15:3381. doi: 10.3390/nu15153381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Ma Y. F., Lin Y. A., Huang C. L., Hsu C. C., Wang S., Yeh S. R., Tsai Y. C. Lactiplantibacillus plantarum PS128 alleviates exaggerated cortical beta oscillations and motor deficits in the 6-hydroxydopamine rat model of Parkinson's disease. Probiotics Antimicrob. Proteins. 2023b;15:312–325. doi: 10.1007/s12602-021-09828-x. [DOI] [PubMed] [Google Scholar]
  123. Maftoon H., Davar Siadat S., Tarashi S., Soroush E., Basir Asefi M., Rahimi Foroushani A., Mehdi Soltan Dallal M. Ameliorative effects of Akkermansia muciniphila on anxiety-like behavior and cognitive deficits in a rat model of Alzheimer's disease. Brain Res. 2024;1845:149280. doi: 10.1016/j.brainres.2024.149280. [DOI] [PubMed] [Google Scholar]
  124. Magistrelli L., Amoruso A., Mogna L., Graziano T., Cantello R., Pane M., Comi C. Probiotics may have beneficial effects in Parkinson's disease: in vitro evidence. Front. Immunol. 2019;10:969. doi: 10.3389/fimmu.2019.00969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Mahbub N. U., Islam M. M., Hong S. T., Chung H. J. Dysbiosis of the gut microbiota and its effect on alpha-synuclein and prion protein misfolding: consequences for neurodegeneration. Front. Cell. Infect. Microbiol. 2024;14:1348279. doi: 10.3389/fcimb.2024.1348279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Marizzoni M., Cattaneo A., Mirabelli P., Festari C., Lopizzo N., Nicolosi V., Mombelli E., Mazzelli M., Luongo D., Naviglio D., Coppola L., Salvatore M., Frisoni G. B. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer's disease. J. Alzheimers Dis. 2020;78:683–697. doi: 10.3233/JAD-200306. [DOI] [PubMed] [Google Scholar]
  127. Marsova M., Poluektova E., Odorskaya M., Ambaryan A., Revishchin A., Pavlova G., Danilenko V. Protective effects of Lactobacillus fermentum U-21 against paraquat-induced oxidative stress in Caenorhabditis elegans and mouse models. World J. Microbiol. Biotechnol. 2020;36:104. doi: 10.1007/s11274-020-02879-2. [DOI] [PubMed] [Google Scholar]
  128. McFarthing K., Buff S., Rafaloff G., Pitzer K., Fiske B., Navangul A., Beissert K., Pilcicka A., Fuest R., Wyse R. K., Stott S. R. W. Parkinson's disease drug therapies in the clinical trial pipeline: 2024 update. J. Parkinsons Dis. 2024;14:899–912. doi: 10.3233/JPD-240272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Mead R. J., Shan N., Reiser H. J., Marshall F., Shaw P. J. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat. Rev. Drug Discov. 2023;22:185–212. doi: 10.1038/s41573-022-00612-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Medeiros D., McMurry K., Pfeiffer M., Newsome K., Testerman T., Graf J., Silver A. C., Sacchetti P. Slowing Alzheimer's disease progression through probiotic supplementation. Front. Neurosci. 2024;18:1309075. doi: 10.3389/fnins.2024.1309075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Mehrabadi S., Sadr S. S. Assessment of probiotics mixture on memory function, inflammation markers, and oxidative stress in an Alzheimer's disease model of rats. Iran. Biomed. J. 2020;24:220–228. doi: 10.29252/ibj.24.4.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Mlynarska E., Gadzinowska J., Tokarek J., Forycka J., Szuman A., Franczyk B., Rysz J. The role of the microbiome-brain-gut axis in the pathogenesis of depressive disorder. Nutrients. 2022;14:1921. doi: 10.3390/nu14091921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Mohammadi G., Dargahi L., Peymani A., Mirzanejad Y., Alizadeh S. A., Naserpour T., Nassiri-Asl M. The Effects of probiotic formulation pretreatment (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) on a lipopolysaccharide rat model. J. Am. Coll. Nutr. 2019;38:209–217. doi: 10.1080/07315724.2018.1487346. [DOI] [PubMed] [Google Scholar]
  134. Moles L., Egimendia A., Osorio-Querejeta I., Iparraguirre L., Alberro A., Suarez J., Sepulveda L., Castillo-Trivino T., Munoz-Culla M., Ramos-Cabrer P., Otaegui D. Gut microbiota changes in experimental autoimmune encephalomyelitis and cuprizone mice models. ACS Chem. Neurosci. 2021;12:893–905. doi: 10.1021/acschemneuro.0c00695. [DOI] [PubMed] [Google Scholar]
  135. Montgomery T. L., Eckstrom K., Lile K. H., Caldwell S., Heney E. R., Lahue K. G., D'Alessandro A., Wargo M. J., Krementsov D. N. Lactobacillus reuteri tryptophan metabolism promotes host susceptibility to CNS autoimmunity. Microbiome. 2022;10:198. doi: 10.1186/s40168-022-01408-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Morais L. H., Schreiber H. L., Mazmanian S. K. The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 2021;19:241–255. doi: 10.1038/s41579-020-00460-0. [DOI] [PubMed] [Google Scholar]
  137. Moravejolahkami A. R., Chitsaz A., Hassanzadeh A., Paknahad Z. Anti-inflammatory-antioxidant modifications and synbiotics improved health-related conditions in patients with progressive forms of multiple sclerosis: a single-center, randomized clinical trial. Complement. Ther. Clin. Pract. 2023;53:101794. doi: 10.1016/j.ctcp.2023.101794. [DOI] [PubMed] [Google Scholar]
  138. Moser T., Akgun K., Proschmann U., Sellner J., Ziemssen T. The role of TH17 cells in multiple sclerosis: therapeutic implications. Autoimmun. Rev. 2020;19:102647. doi: 10.1016/j.autrev.2020.102647. [DOI] [PubMed] [Google Scholar]
  139. Mou Y., Du Y., Zhou L., Yue J., Hu X., Liu Y., Chen S., Lin X., Zhang G., Xiao H., Dong B. Gut microbiota interact with the brain through systemic chronic inflammation: implications on neuroinflammation, neurodegeneration, and aging. Front. Immunol. 2022;13:796288. doi: 10.3389/fimmu.2022.796288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Napoles-Medina A. Y., Aguilar-Uscanga B. R., Solis-Pacheco J. R., Tejeda-Martinez A. R., Ramirez-Jirano L. J., Urmeneta-Ortiz M. F., Chaparro-Huerta V., Flores-Soto M. E. Oral administration of Lactobacillus inhibits the permeability of blood-brain and gut barriers in a Parkinsonism model. Behav. Neurol. 2023;2023:6686037. doi: 10.1155/2023/6686037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Neiworth-Petshow E. M., Baldwin-Sayre C. Naturopathic treatment of gastrointestinal dysfunction in the setting of Parkinson's disease. Integr. Med. (Encinitas) 2018;17:44–50. [PMC free article] [PubMed] [Google Scholar]
  142. Nicholson K., Bjornevik K., Abu-Ali G., Chan J., Cortese M., Dedi B., Jeon M., Xavier R., Huttenhower C., Ascherio A., Berry J. D. The human gut microbiota in people with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 2021;22:186–194. doi: 10.1080/21678421.2020.1828475. [DOI] [PubMed] [Google Scholar]
  143. Nie H., Wang X., Luo Y., Kong F., Mu G., Wu X. Mechanism explanation on improved cognitive ability of D-gal inducing aged mice model by Lactiplantibacillus plantarum MWFLp-182 via the microbiota-gut-brain axis. J. Agric. Food Chem. 2024;72:9795–9806. doi: 10.1021/acs.jafc.3c09675. [DOI] [PubMed] [Google Scholar]
  144. Nimgampalle M., Kuna Y. Anti-Alzheimer Properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer's disease induced albino rats. J. Clin. Diagn. Res. 2017;11:KC01–KC05. doi: 10.7860/JCDR/2017/26106.10428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Noor Eddin A., Alfuwais M., Noor Eddin R., Alkattan K., Yaqinuddin A. Gut-modulating agents and amyotrophic lateral sclerosis: current evidence and future perspectives. Nutrients. 2024;16:590. doi: 10.3390/nu16050590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Ohno K., Abdelhamid M., Zhou C., Jung C. G., Michikawa M. Bifidobacterium breve MCC1274 supplementation increased the plasma levels of metabolites with potential anti-oxidative activity in APP knock-in mice. J. Alzheimers Dis. 2022;89:1413–1425. doi: 10.3233/JAD-220479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Ojha S., Patil N., Jain M., Kole C., Kaushik P. Probiotics for neurodegenerative diseases: a systemic review. Microorganisms. 2023;11:1083. doi: 10.3390/microorganisms11041083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Ou Z., Deng L., Lu Z., Wu F., Liu W., Huang D., Peng Y. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer's disease. Nutr. Diabetes. 2020;10:12. doi: 10.1038/s41387-020-0115-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Pan H., Sun T., Cui M., Ma N., Yang C., Liu J., Pang G., Liu B., Li L., Zhang X., Zhang W., Chang J., Wang H. Light-sensitive Lactococcus lactis for microbe-gut-brain axis regulating via upconversion optogenetic micro-nano system. ACS Nano. 2022;16:6049–6063. doi: 10.1021/acsnano.1c11536. [DOI] [PubMed] [Google Scholar]
  150. Parra I., Martinez I., Vasquez-Celaya L., Gongora-Alfaro J. L., Tizabi Y., Mendieta L. Neuroprotective and immunomodulatory effects of probiotics in a rat model of Parkinson's disease. Neurotox. Res. 2023;41:187–200. doi: 10.1007/s12640-022-00627-y. [DOI] [PubMed] [Google Scholar]
  151. Patel C., Pande S., Acharya S. Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus UBLR-58 against scopolamine-induced memory impairment in mice. Naunyn Schmiedebergs Arch. Pharmacol. 2020;393:1955–1962. doi: 10.1007/s00210-020-01904-3. [DOI] [PubMed] [Google Scholar]
  152. Perez Visnuk D., LeBlanc J. G., de Moreno, de LeBlanc A. Neuroprotective effects exerted by a combination of selected lactic acid bacteria in a mouse parkinsonism model under levodopa-benserazide treatment. Neurochem. Res. 2024;49:2940–2956. doi: 10.1007/s11064-024-04217-6. [DOI] [PubMed] [Google Scholar]
  153. Perez Visnuk D., Savoy de Giori G., LeBlanc J. G., de Moreno de LeBlanc A. Neuroprotective effects associated with immune modulation by selected lactic acid bacteria in a Parkinson's disease model. Nutrition. 2020;79-80:110995. doi: 10.1016/j.nut.2020.110995. [DOI] [PubMed] [Google Scholar]
  154. Qi Y., Dong Y., Chen J., Xie S., Ma X., Yu X., Yu Y., Wang Y. Lactiplantibacillus plantarum SG5 inhibits neuroinflammation in MPTP-induced PD mice through GLP-1/PGC-1alpha pathway. Exp. Neurol. 2024;383:115001. doi: 10.1016/j.expneurol.2024.115001. [DOI] [PubMed] [Google Scholar]
  155. Qu L., Liu F., Fang Y., Wang L., Chen H., Yang Q., Dong H., Jin L., Wu W., Sun D. Improvement in zebrafish with diabetes and Alzheimer's disease treated with pasteurized Akkermansia muciniphila. Microbiol. Spectr. 2023;11:e0084923. doi: 10.1128/spectrum.00849-23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Quigley E.M.M. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr. Neurol. NeuroSci. Rep. 2017;17:94. doi: 10.1007/s11910-017-0802-6. [DOI] [PubMed] [Google Scholar]
  157. Rahimlou M., Hosseini S. A., Majdinasab N., Haghighizadeh M. H., Husain D. Effects of long-term administration of Multi-Strain Probiotic on circulating levels of BDNF, NGF, IL-6 and mental health in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Nutr. Neurosci. 2022a;25:411–422. doi: 10.1080/1028415X.2020.1758887. [DOI] [PubMed] [Google Scholar]
  158. Rahimlou M., Nematollahi S., Husain D., Banaei-Jahromi N., Majdinasab N., Hosseini S. A. Probiotic supplementation and systemic inflammation in relapsing-remitting multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Front. Neurosci. 2022b;16:901846. doi: 10.3389/fnins.2022.901846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Ren S., Zhang X., Guan H., Wu L., Yu M., Hou D., Yan Y., Fang X. Lactobacillus acidipiscis induced regulatory gamma delta T cells and attenuated experimental autoimmune encephalomyelitis. Front. Immunol. 2021;12:623451. doi: 10.3389/fimmu.2021.623451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Rezaei Asl Z., Sepehri G., Salami M. Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer's disease. Behav. Brain Res. 2019;376:112183. doi: 10.1016/j.bbr.2019.112183. [DOI] [PubMed] [Google Scholar]
  161. Rezaeiasl Z., Salami M., Sepehri G. The effects of probiotic Lactobacillus and Bifidobacterium strains on memory and learning behavior, long-term potentiation (LTP), and some biochemical parameters in beta-amyloid-induced rat's model of Alzheimer's disease. Prev. Nutr. Food Sci. 2019;24:265–273. doi: 10.3746/pnf.2019.24.3.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Rietdijk C.D., Perez-Pardo P., Garssen J., van Wezel R. J., Kraneveld A. D. Exploring Braak's hypothesis of Parkinson's disease. Front. Neurol. 2017;8:37. doi: 10.3389/fneur.2017.00037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Roubaud-Baudron C., Krolak-Salmon P., Quadrio I., Megraud F., Salles N. Impact of chronic Helicobacter pylori infection on Alzheimer's disease: preliminary results. Neurobiol. Aging. 2012;33:1009.e11–9. doi: 10.1016/j.neurobiolaging.2011.10.021. [DOI] [PubMed] [Google Scholar]
  164. Sahu B., Johnson L. M., Sohrabi M., Usatii A. A., Craig R. M. J., Kaelberer J. B., Chandrasekaran S. P., Kaur H., Nookala S., Combs C. K. Effects of probiotics on colitis-induced exacerbation of Alzheimer's disease in App(NL-G-F) mice. Int. J. Mol. Sci. 2023;24:11551. doi: 10.3390/ijms241411551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Sajedi D., Shabani R., Elmieh A. Changes in leptin, serotonin, and cortisol after eight weeks of aerobic exercise with probiotic intake in a cuprizone-induced demyelination mouse model of multiple sclerosis. Cytokine. 2021;144:155590. doi: 10.1016/j.cyto.2021.155590. [DOI] [PubMed] [Google Scholar]
  166. Sajedi D., Shabani R., Elmieh A. The effect of aerobic training with the consumption of probiotics on the myelination of nerve fibers in cuprizone-induced demyelination mouse model of multiple sclerosis. Basic Clin. Neurosci. 2023;14:73–86. doi: 10.32598/bcn.2022.3104.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Salehipour Z., Haghmorad D., Sankian M., Rastin M., Nosratabadi R., Soltan Dallal M. M., Tabasi N., Khazaee M., Nasiraii L.R., Mahmoudi M. Bifidobacterium animalis in combination with human origin of Lactobacillus plantarum ameliorate neuroinflammation in experimental model of multiple sclerosis by altering CD4+ T cell subset balance. Biomed. Pharmacother. 2017;95:1535–1548. doi: 10.1016/j.biopha.2017.08.117. [DOI] [PubMed] [Google Scholar]
  168. Samani S. A., Moloudi M. R., Ramezanzadeh R., Abdi M., Nikkhoo B., Izadpanah E., Roshani D., Abdolahi A., Esmaili P., Hassanzadeh K. Oral administration of probiotic enterococcus durans to ameliorate experimental autoimmune encephalomyelitis in mice. Basic Clin. Neurosci. 2022;13:35–46. doi: 10.32598/bcn.2021.1955.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Sampson T. R., Debelius J. W., Thron T., Janssen S., Shastri G. G., Ilhan Z. E., Challis C., Schretter C. E., Rocha S., Gradinaru V., Chesselet M. F., Keshavarzian A., Shannon K. M., Krajmalnik-Brown R., Wittung-Stafshede P., Knight R., Mazmanian S. K. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell. 2016;167:1469–1480.e12. doi: 10.1016/j.cell.2016.11.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Sanborn V., Azcarate-Peril M. A., Updegraff J., Manderino L. M., Gunstad J. A randomized clinical trial examining the impact of LGG probiotic supplementation on psychological status in middle-aged and older adults. Contemp. Clin. Trials Commun. 2018;12:192–197. doi: 10.1016/j.conctc.2018.11.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Sancandi M., De Caro C., Cypaite N., Marascio N., Avagliano C., De Marco C., Russo E., Constanti A., Mercer A. Effects of a probiotic suspension Symprove on a rat early-stage Parkinson's disease model. Front. Aging Neurosci. 2022;14:986127. doi: 10.3389/fnagi.2022.986127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Sanders M. E., Merenstein D. J., Reid G., Gibson G. R., Rastall R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019;16:605–616. doi: 10.1038/s41575-019-0173-3. [DOI] [PubMed] [Google Scholar]
  173. Sapko K., Jamroz-Wisniewska A., Rejdak K. Novel drugs in a pipeline for progressive multiple sclerosis. J. Clin. Med. 2022;11:3342. doi: 10.3390/jcm11123342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Saresella M., Marventano I., Barone M., La Rosa F., Piancone F., Mendozzi L., Arma A., Rossi V., Pugnetti L., Roda G., Casagni E., Cas M. D., Paroni R., Brigidi P., Turroni S., Clerici M. Alterations in circulating fatty acid are associated with gut microbiota dysbiosis and inflammation in multiple sclerosis. Front. Immunol. 2020;11:1390. doi: 10.3389/fimmu.2020.01390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Scheltens P., De Strooper B., Kivipelto M., Holstege H., Chetelat G., Teunissen C. E., Cummings J., van der Flier W. M. Alzheimer's disease. Lancet. 2021;397:1577–1590. doi: 10.1016/S0140-6736(20)32205-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Scheperjans F., Aho V., Pereira P. A., Koskinen K., Paulin L., Pekkonen E., Haapaniemi E., Kaakkola S., Eerola-Rautio J., Pohja M., Kinnunen E., Murros K., Auvinen P. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov. Disord. 2015;30:350–358. doi: 10.1002/mds.26069. [DOI] [PubMed] [Google Scholar]
  177. Seddik H. A., Bendali F., Gancel F., Fliss I., Spano G., Drider D. Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob. Proteins. 2017;9:111–122. doi: 10.1007/s12602-017-9264-z. [DOI] [PubMed] [Google Scholar]
  178. Shamsipour S., Sharifi G., Taghian F. An 8-week administration of Bifidobacterium bifidum and Lactobacillus plantarum combined with exercise training alleviates neurotoxicity of Abeta and spatial learning via acetylcholine in Alzheimer rat model. J. Mol. Neurosci. 2021;71:1495–1505. doi: 10.1007/s12031-021-01812-y. [DOI] [PubMed] [Google Scholar]
  179. Sharifa M., Ghosh T., Daher O.A., Bhusal P., Alaameri Y. A., Naz J., Ekhator C., Bellegarde S. B., Bisharat P., Vaghani V., Hussain A. Unraveling the gut-brain axis in multiple sclerosis: exploring dysbiosis, oxidative stress, and therapeutic insights. Cureus. 2023;15:e47058. doi: 10.7759/cureus.47058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Shi S., Zhang Q., Sang Y., Ge S., Wang Q., Wang R., He J. Probiotic Bifidobacterium longum BB68S improves cognitive functions in healthy older adults: a randomized, double-blind, placebo-controlled trial. Nutrients. 2022;15:51. doi: 10.3390/nu15010051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Smith C. A., Smith H., Roberts L., Coward L., Gorman G., Verma A., Li Q., Buford T. W., Carter C. S., Jumbo-Lucioni P. Probiotic releasing angiotensin (1-7) in a drosophila model of Alzheimer's disease produces sex-specific effects on cognitive function. J. Alzheimers Dis. 2022;85:1205–1217. doi: 10.3233/JAD-210464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Snigdha S., Ha K., Tsai P., Dinan T. G., Bartos J. D., Shahid M. Probiotics: potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol. Ther. 2022;231:107978. doi: 10.1016/j.pharmthera.2021.107978. [DOI] [PubMed] [Google Scholar]
  183. Song X., Zhao Z., Zhao Y., Wang Z., Wang C., Yang G., Li S. Lactobacillus plantarum DP189 prevents cognitive dysfunction in D-galactose/AlCl(3) induced mouse model of Alzheimer's disease via modulating gut microbiota and PI3K/Akt/GSK-3beta signaling pathway. Nutr. Neurosci. 2022;25:2588–2600. doi: 10.1080/1028415X.2021.1991556. [DOI] [PubMed] [Google Scholar]
  184. Srivastav S., Neupane S., Bhurtel S., Katila N., Maharjan S., Choi H., Hong J. T., Choi D. Y. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J. Nutr. Biochem. 2019;69:73–86. doi: 10.1016/j.jnutbio.2019.03.021. [DOI] [PubMed] [Google Scholar]
  185. Straus Farber R., Walker E. L., Diallo F., Onomichi K., Riley C., Zhang L., Zhu W., De Jager P. L., Xia Z. A randomized cross-over trial of prebiotics and probiotics in multiple sclerosis: Trial feasibility, supplement tolerability and symptom abatement. Mult. Scler. Relat. Disord. 2024;89:105762. doi: 10.1016/j.msard.2024.105762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Su Y., Wang D., Liu N., Yang J., Sun R., Zhang Z. Clostridium butyricum improves cognitive dysfunction in ICV-STZ-induced Alzheimer's disease mice via suppressing TLR4 signaling pathway through the gut-brain axis. PLoS One. 2023;18:e0286086. doi: 10.1371/journal.pone.0286086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Sun H., Zhao F., Liu Y., Ma T., Jin H., Quan K., Leng B., Zhao J., Yuan X., Li Z., Li F., Kwok L. Y., Zhang S., Sun Z., Zhang J., Zhang H. Probiotics synergized with conventional regimen in managing Parkinson's disease. NPJ Parkinsons Dis. 2022;8:62. doi: 10.1038/s41531-022-00327-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Sun J., Li H., Jin Y., Yu J., Mao S., Su K.P., Ling Z., Liu J. Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson's disease via gut microbiota-GLP-1 pathway. Brain Behav. Immun. 2021a;91:703–715. doi: 10.1016/j.bbi.2020.10.014. [DOI] [PubMed] [Google Scholar]
  189. Sun J., Xu J., Yang B., Chen K., Kong Y., Fang N., Gong T., Wang F., Ling Z., Liu J. Effect of Clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer's disease via regulating gut microbiota and metabolites butyrate. Mol. Nutr. Food Res. 2020;64:e1900636. doi: 10.1002/mnfr.201900636. [DOI] [PubMed] [Google Scholar]
  190. Sun M., Bao W., Huang C., Xia Z., Zhang C., Wang G., Wang R., Li J., Roux S., Li Q., Zou D., Ma K., Bao X. A novel probiotic formula, BIOCG, protects against Alzheimer's-related cognitive deficits via regulation of dendritic spine dynamics. Curr. Alzheimer Res. 2021b;18:558–572. doi: 10.2174/1567205018666211022091110. [DOI] [PubMed] [Google Scholar]
  191. Sun M. F., Shen Y. Q. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's disease. Ageing Res. Rev. 2018;45:53–61. doi: 10.1016/j.arr.2018.04.004. [DOI] [PubMed] [Google Scholar]
  192. Sushma G., Vaidya B., Sharma S., Devabattula G., Bishnoi M., Kondepudi K. K., Sharma S. S. Bifidobacterium breve Bif11 supplementation improves depression-related neurobehavioural and neuroinflammatory changes in the mouse. Neuropharmacology. 2023;229:109480. doi: 10.1016/j.neuropharm.2023.109480. [DOI] [PubMed] [Google Scholar]
  193. Swer N. M., Venkidesh B. S., Murali T. S., Mumbrekar K. D. Gut microbiota-derived metabolites and their importance in neurological disorders. Mol. Biol. Rep. 2023;50:1663–1675. doi: 10.1007/s11033-022-08038-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Tamtaji O. R., Heidari-Soureshjani R., Mirhosseini N., Kouchaki E., Bahmani F., Aghadavod E., Tajabadi-Ebrahimi M., Asemi Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer's disease: a randomized, double-blind, controlled trial. Clin. Nutr. 2019a;38:2569–2575. doi: 10.1016/j.clnu.2018.11.034. [DOI] [PubMed] [Google Scholar]
  195. Tamtaji O. R., Taghizadeh M., Daneshvar Kakhaki R., Kouchaki E., Bahmani F., Borzabadi S., Oryan S., Mafi A., Asemi Z. Clinical and metabolic response to probiotic administration in people with Parkinson's disease: a randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2019b;38:1031–1035. doi: 10.1016/j.clnu.2018.05.018. [DOI] [PubMed] [Google Scholar]
  196. Tan A. H., Lim S. Y., Chong K. K., Manap M. A. A., Hor J. W., Lim J. L., Low S. C., Chong C. W., Mahadeva S., Lang A. E. Probiotics for constipation in Parkinson disease: a randomized placebo-controlled study. Neurology. 2021;96:e772–e782. doi: 10.1212/WNL.0000000000010998. [DOI] [PubMed] [Google Scholar]
  197. Tan F. H. P., Liu G., Lau S. A., Jaafar M. H., Park Y. H., Azzam G., Li Y., Liong M. T. Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer's disease model and alleviated neurodegeneration in the eye. Benef. Microbes. 2020;11:79–89. doi: 10.3920/BM2019.0086. [DOI] [PubMed] [Google Scholar]
  198. Tankou S. K., Regev K., Healy B. C., Cox L. M., Tjon E., Kivisakk P., Vanande I. P., Cook S., Gandhi R., Glanz B., Stankiewicz J., Weiner H. L. Investigation of probiotics in multiple sclerosis. Mult. Scler. 2018;24:58–63. doi: 10.1177/1352458517737390. [DOI] [PubMed] [Google Scholar]
  199. Tansey M. G., Wallings R. L., Houser M. C., Herrick M. K., Keating C. E., Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 2022;22:657–673. doi: 10.1038/s41577-022-00684-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Taylor J. P., McKeith I. G., Burn D. J., Boeve B. F., Weintraub D., Bamford C., Allan L. M., Thomas A. J., O'Brien J. T. New evidence on the management of Lewy body dementia. Lancet Neurol. 2020;19:157–169. doi: 10.1016/S1474-4422(19)30153-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Thevaranjan N., Puchta A., Schulz C., Naidoo A., Szamosi J. C., Verschoor C. P., Loukov D., Schenck L. P., Jury J., Foley K. P., Schertzer J. D., Larche M. J., Davidson D. J., Verdu E. F., Surette M. G., Bowdish D. M. E. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2017;21:455–466.e4. doi: 10.1016/j.chom.2017.03.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Thirion F., Sellebjerg F., Fan Y., Lyu L., Hansen T. H., Pons N., Levenez F., Quinquis B., Stankevic E., Sondergaard H. B., Dantoft T. M., Poulsen C. S., Forslund S. K., Vestergaard H., Hansen T., Brix S., Oturai A., Sorensen P. S., Ehrlich S. D., Pedersen O. The gut microbiota in multiple sclerosis varies with disease activity. Genome Med. 2023;15:1. doi: 10.1186/s13073-022-01148-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Traini C., Bulli I., Sarti G., Morecchiato F., Coppi M., Rossolini G. M., Di Pilato V., Vannucchi M. G. Amelioration of serum Abeta levels and cognitive impairment in APPPS1 transgenic mice following symbiotic administration. Nutrients. 2024;16:2381. doi: 10.3390/nu16152381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Valvaikar S., Vaidya B., Sharma S., Bishnoi M., Kondepudi K. K., Sharma S. S. Supplementation of probiotic Bifidobacterium breve Bif11 reverses neurobehavioural deficits, inflammatory changes and oxidative stress in Parkinson's disease model. Neurochem. Int. 2024;174:105691. doi: 10.1016/j.neuint.2024.105691. [DOI] [PubMed] [Google Scholar]
  205. Van de Roovaart H. J., Nguyen N., Veenstra T. D. Huntington's disease drug development: a phase 3 pipeline analysis. Pharmaceuticals (Basel) 2023;16:1513. doi: 10.3390/ph16111513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Van Es M. A. Amyotrophic lateral sclerosis; clinical features, differential diagnosis and pathology. Int. Rev. Neurobiol. 2024;176:1–47. doi: 10.1016/bs.irn.2024.04.011. [DOI] [PubMed] [Google Scholar]
  207. van Langelaar J., Rijvers L., Smolders J., van Luijn M. M. B and T cells driving multiple sclerosis: identity, mechanisms and potential triggers. Front. Immunol. 2020;11:760. doi: 10.3389/fimmu.2020.00760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Ventura R. E., Iizumi T., Battaglia T., Liu M., Perez-Perez G. I., Herbert J., Blaser M. J. Gut microbiome of treatment-naive MS patients of different ethnicities early in disease course. Sci. Rep. 2019;9:16396. doi: 10.1038/s41598-019-52894-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Wakabayashi K., Tanji K., Odagiri S., Miki Y., Mori F., Takahashi H. The Lewy body in Parkinson's disease and related neurodegenerative disorders. Mol. Neurobiol. 2013;47:495–508. doi: 10.1007/s12035-012-8280-y. [DOI] [PubMed] [Google Scholar]
  210. Wang L., Zhao Z., Zhao L., Zhao Y., Yang G., Wang C., Gao L., Niu C., Li S. Lactobacillus plantarum DP189 reduces alpha-SYN aggravation in MPTP-induced Parkinson's disease mice via regulating oxidative damage, inflammation, and gut microbiota disorder. J. Agric. Food Chem. 2022a;70:1163–1173. doi: 10.1021/acs.jafc.1c07711. [DOI] [PubMed] [Google Scholar]
  211. Wang S., Chen H., Wen X., Mu J., Sun M., Song X., Liu B., Chen J., Fan X. The efficacy of fecal microbiota transplantation in experimental autoimmune encephalomyelitis: transcriptome and gut microbiota profiling. J. Immunol. Res. 2021;2021:4400428. doi: 10.1155/2021/4400428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Wang Y., Chen W. J., Han Y. Y., Xu X., Yang A. X., Wei J., Hong D. J., Fang X., Chen T. T. Neuroprotective effect of engineered Clostridiumbutyricum-pMTL007-GLP-1 on Parkinson's disease mice models via promoting mitophagy. Bioeng. Transl. Med. 2023;8:e10505. doi: 10.1002/btm2.10505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Wang Y., Wang D., Lv H., Dong Q., Li J., Geng W., Wang J., Liu F., Jia L., Wang Y. Modulation of the gut microbiota and glycometabolism by a probiotic to alleviate amyloid accumulation and cognitive impairments in AD rats. Mol. Nutr. Food Res. 2022b;66:e2200265. doi: 10.1002/mnfr.202200265. [DOI] [PubMed] [Google Scholar]
  214. Webberley T. S., Bevan R. J., Kerry-Smith J., Dally J., Michael D. R., Thomas S., Rees M., Morgan J. E., Marchesi J. R., Good M. A., Plummer S. F., Wang D., Hughes T. R. Assessment of Lab4P probiotic effects on cognition in 3xTg-AD Alzheimer's disease model mice and the SH-SY5Y neuronal cell line. Int. J. Mol. Sci. 2023;24:4683. doi: 10.3390/ijms24054683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Woo J. Y., Gu W., Kim K. A., Jang S. E., Han M. J., Kim D. H. Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe. 2014;27:22–26. doi: 10.1016/j.anaerobe.2014.03.003. [DOI] [PubMed] [Google Scholar]
  216. Wu H., Wei J., Zhao X., Liu Y., Chen Z., Wei K., Lu J., Chen W., Jiang M., Li S., Chen T. Neuroprotective effects of an engineered Escherichia coli Nissle 1917 on Parkinson's disease in mice by delivering GLP-1 and modulating gut microbiota. Bioeng. Transl. Med. 2023a;8:e10351. doi: 10.1002/btm2.10351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Wu Y., Niu X., Li P., Tong T., Wang Q., Zhang M., Li Y., Liu J., Li Z. Lactobacillaceae improve cognitive dysfunction via regulating gut microbiota and suppressing Abeta deposits and neuroinflammation in APP/PS1 mice. Arch. Microbiol. 2023b;205:118. doi: 10.1007/s00203-023-03466-3. [DOI] [PubMed] [Google Scholar]
  218. Xiao-Hang Q., Si-Yue C., Hui-Dong T. Multi-strain probiotics ameliorate Alzheimer's-like cognitive impairment and pathological changes through the AKT/GSK-3beta pathway in senescence-accelerated mouse prone 8 mice. Brain Behav. Immun. 2024;119:14–27. doi: 10.1016/j.bbi.2024.03.031. [DOI] [PubMed] [Google Scholar]
  219. Xiao J., Katsumata N., Bernier F., Ohno K., Yamauchi Y., Odamaki T., Yoshikawa K., Ito K., Kaneko T. Probiotic Bifidobacterium breve in improving cognitive functions of older adults with suspected mild cognitive impairment: a randomized, double-blind, placebo-controlled trial. J. Alzheimers Dis. 2020;77:139–147. doi: 10.3233/JAD-200488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Xin C., Prasad A. A. Probiotics treatment improves hippocampal dependent cognition in a rodent model of Parkinson's disease. Microorganisms. 2020;8:1661. doi: 10.3390/microorganisms8111661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Xin Z., Xin C., Huo J., Liu Q., Dong H., Li R., Liu Y. Neuroprotective effect of a multistrain probiotic mixture in SOD1(G93A) mice by reducing SOD1 aggregation and targeting the microbiota-gut-brain axis. Mol. Neurobiol. 2024;61:10051–10071. doi: 10.1007/s12035-024-03988-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Yang X., He X., Xu S., Zhang Y., Mo C., Lai Y., Song Y., Yan Z., Ai P., Qian Y., Xiao Q. Effect of Lacticaseibacillus paracasei strain Shirota supplementation on clinical responses and gut microbiome in Parkinson's disease. Food Funct. 2023a;14:6828–6839. doi: 10.1039/D3FO00728F. [DOI] [PubMed] [Google Scholar]
  223. Yang X., Yu D., Xue L., Li H., Du J. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm. Sin. B. 2020;10:475–487. doi: 10.1016/j.apsb.2019.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Yang X. Q., Zhao Y., Xue L., Wang H. S., Zeng J., Du J. R., Xu Z. Probiotics improve cognitive impairment by decreasing bacteria-related pattern recognition receptor-mediated inflammation in the gut-brain axis of mice. J. Integr. Neurosci. 2023b;22:92. doi: 10.31083/j.jin2204092. [DOI] [PubMed] [Google Scholar]
  225. Yue M., Wei J., Chen W., Hong D., Chen T., Fang X. Neurotrophic role of the next-generation probiotic strain L. lactis MG1363-pMG36e-GLP-1 on Parkinson's disease via inhibiting ferroptosis. Nutrients. 2022;14:4886. doi: 10.3390/nu14224886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Zaki R. M., Ramasamy K., Ahmad Alwi N. A., Mohd Yusoff R., Lim S. M. Pediococcus pentosaceus LAB6- and Lactiplantibacillus plantarum LAB12-derived cell free supernatant inhibited RhoA activation and reduced amyloid-beta in vitro. Probiotics Antimicrob. Proteins. 2024;16:62–75. doi: 10.1007/s12602-022-10009-7. [DOI] [PubMed] [Google Scholar]
  227. Zali A., Hajyani S., Salari M., Tajabadi-Ebrahimi M., Mortazavian A. M., Pakpour B. Co-administration of probiotics and vitamin D reduced disease severity and complications in patients with Parkinson's disease: a randomized controlled clinical trial. Psychopharmacology (Berl.) 2024;241:1905–1914. doi: 10.1007/s00213-024-06606-9. [DOI] [PubMed] [Google Scholar]
  228. Zeng Q., Shen J., Chen K., Zhou J., Liao Q., Lu K., Yuan J., Bi F. The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients. Sci. Rep. 2020;10:12998. doi: 10.1038/s41598-020-69845-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Zhang Y., Wang Y., Zhou Z., Yang Y., Zhao J., Kang X., Li Z., Shen X., He F., Cheng R. Live and heat-inactivated streptococcus thermophilus MN-ZLW-002 mediate the gut-brain axis, alleviating cognitive dysfunction in APP/PS1 mice. Nutrients. 2024a;16:4631. doi: 10.3390/nu16060844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Zhang Y., Xia Y., Sun J. Probiotics and microbial metabolites maintain barrier and neuromuscular functions and clean protein aggregation to delay disease progression in TDP43 mutation mice. Gut Microbes. 2024b;16:2363880. doi: 10.1080/19490976.2024.2363880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Zhao M., Chu J., Feng S., Guo C., Xue B., He K., Li L. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: a review. Biomed. Pharmacother. 2023;164:114985. doi: 10.1016/j.biopha.2023.114985. [DOI] [PubMed] [Google Scholar]
  232. Zheng Y., Bonfili L., Wei T., Eleuteri A. M. Understanding the gut-brain axis and its therapeutic implications for neurodegenerative disorders. Nutrients. 2023;15:844. doi: 10.3390/nu15214631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Zhou L., Han D., Wang X., Chen Z. Probiotic formulation VSL#3 interacts with mesenchymal stromal cells to protect dopaminergic neurons via centrally and peripherally suppressing NOD-like receptor protein 3 inflammasome-mediated inflammation in Parkinson's disease mice. Microbiol. Spectr. 2023;11:e0320822. doi: 10.1128/spectrum.03208-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Zhu G., Zhao J., Wang G., Chen W. Bifidobacterium breve HNXY26M4 attenuates cognitive deficits and neuroinflammation by regulating the gut-brain axis in APP/PS1 mice. J. Agric. Food Chem. 2023;71:4646–4655. doi: 10.1021/acs.jafc.3c00652. [DOI] [PubMed] [Google Scholar]

Articles from Biomolecules & Therapeutics are provided here courtesy of Korean Society of Applied Pharmacology

RESOURCES