Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Mar 16;17(6):1598–1605. doi: 10.1093/emboj/17.6.1598

Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization.

M Palmer 1, R Harris 1, C Freytag 1, M Kehoe 1, J Tranum-Jensen 1, S Bhakdi 1
PMCID: PMC1170507  PMID: 9501081

Abstract

Streptolysin O (SLO) is a bacterial exotoxin that binds to cell membranes containing cholesterol and then oligomerizes to form large pores. Along with rings, arc-shaped oligomers form on membranes. It has been suggested that each arc represents an incompletely assembled oligomer and constitutes a functional pore, faced on the opposite side by a free edge of the lipid membrane. We sought functional evidence in support of this idea by using an oligomerization-deficient, non-lytic mutant of SLO. This protein, which was created by chemical modification of a single mutant cysteine (T250C) with N-(iodoacetaminoethyl)-1-naphthylamine-5-sulfonic acid, formed hybrid oligomers with active SLO on membranes. However, incorporation of the modified T250C mutant inhibited subsequent oligomerization, so that the hybrid oligomers were reduced in size. These appeared as typical arc lesions in the electron microscope. They formed pores that permitted passage of NaCl and calcein but restricted permeation of large dextran molecules. The data indicate that the SLO pore is formed gradually during oligomerization, implying that pores lined by protein on one side and an edge of free lipid on the other may be created in the plasma membrane. Intentional manipulation of the pore size may extend the utility of SLO as a tool in cell biological experiments.

Full Text

The Full Text of this article is available as a PDF (634.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Wegner A. Mechanisms of the cytopathic action of actin-ADP-ribosylating toxins. Mol Microbiol. 1992 Oct;6(20):2905–2908. doi: 10.1111/j.1365-2958.1992.tb01749.x. [DOI] [PubMed] [Google Scholar]
  2. Bhakdi S., Tranum-Jensen J. Mechanism of complement cytolysis and the concept of channel-forming proteins. Philos Trans R Soc Lond B Biol Sci. 1984 Sep 6;306(1129):311–324. doi: 10.1098/rstb.1984.0092. [DOI] [PubMed] [Google Scholar]
  3. Bhakdi S., Tranum-Jensen J., Sziegoleit A. Mechanism of membrane damage by streptolysin-O. Infect Immun. 1985 Jan;47(1):52–60. doi: 10.1128/iai.47.1.52-60.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhakdi S., Weller U., Walev I., Martin E., Jonas D., Palmer M. A guide to the use of pore-forming toxins for controlled permeabilization of cell membranes. Med Microbiol Immunol. 1993 Sep;182(4):167–175. doi: 10.1007/BF00219946. [DOI] [PubMed] [Google Scholar]
  5. Eriksen S., Olsnes S., Sandvig K., Sand O. Diphtheria toxin at low pH depolarizes the membrane, increases the membrane conductance and induces a new type of ion channel in Vero cells. EMBO J. 1994 Oct 3;13(19):4433–4439. doi: 10.1002/j.1460-2075.1994.tb06765.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Füssle R., Bhakdi S., Sziegoleit A., Tranum-Jensen J., Kranz T., Wellensiek H. J. On the mechanism of membrane damage by Staphylococcus aureus alpha-toxin. J Cell Biol. 1981 Oct;91(1):83–94. doi: 10.1083/jcb.91.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hugo F., Reichwein J., Arvand M., Krämer S., Bhakdi S. Use of a monoclonal antibody to determine the mode of transmembrane pore formation by streptolysin O. Infect Immun. 1986 Dec;54(3):641–645. doi: 10.1128/iai.54.3.641-645.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Martoglio B., Hofmann M. W., Brunner J., Dobberstein B. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell. 1995 Apr 21;81(2):207–214. doi: 10.1016/0092-8674(95)90330-5. [DOI] [PubMed] [Google Scholar]
  9. Mayer L. D., Hope M. J., Cullis P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986 Jun 13;858(1):161–168. doi: 10.1016/0005-2736(86)90302-0. [DOI] [PubMed] [Google Scholar]
  10. Montecucco C., Papini E., Schiavo G., Padovan E., Rossetto O. Ion channel and membrane translocation of diphtheria toxin. FEMS Microbiol Immunol. 1992 Sep;5(1-3):101–111. doi: 10.1111/j.1574-6968.1992.tb05892.x. [DOI] [PubMed] [Google Scholar]
  11. Ohno-Iwashita Y., Iwamoto M., Mitsui K., Ando S., Iwashita S. A cytolysin, theta-toxin, preferentially binds to membrane cholesterol surrounded by phospholipids with 18-carbon hydrocarbon chains in cholesterol-rich region. J Biochem. 1991 Sep;110(3):369–375. doi: 10.1093/oxfordjournals.jbchem.a123588. [DOI] [PubMed] [Google Scholar]
  12. Palmer M., Buchkremer M., Valeva A., Bhakdi S. Cysteine-specific radioiodination of proteins with fluorescein maleimide. Anal Biochem. 1997 Nov 15;253(2):175–179. doi: 10.1006/abio.1997.2364. [DOI] [PubMed] [Google Scholar]
  13. Palmer M., Jursch R., Weller U., Valeva A., Hilgert K., Kehoe M., Bhakdi S. Staphylococcus aureus alpha-toxin. Production of functionally intact, site-specifically modifiable protein by introduction of cysteine at positions 69, 130, and 186. J Biol Chem. 1993 Jun 5;268(16):11959–11962. [PubMed] [Google Scholar]
  14. Palmer M., Saweljew P., Vulicevic I., Valeva A., Kehoe M., Bhakdi S. Membrane-penetrating domain of streptolysin O identified by cysteine scanning mutagenesis. J Biol Chem. 1996 Oct 25;271(43):26664–26667. doi: 10.1074/jbc.271.43.26664. [DOI] [PubMed] [Google Scholar]
  15. Palmer M., Valeva A., Kehoe M., Bhakdi S. Kinetics of streptolysin O self-assembly. Eur J Biochem. 1995 Jul 15;231(2):388–395. doi: 10.1111/j.1432-1033.1995.tb20711.x. [DOI] [PubMed] [Google Scholar]
  16. Parker M. W., Buckley J. T., Postma J. P., Tucker A. D., Leonard K., Pattus F., Tsernoglou D. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature. 1994 Jan 20;367(6460):292–295. doi: 10.1038/367292a0. [DOI] [PubMed] [Google Scholar]
  17. Pinkney M., Beachey E., Kehoe M. The thiol-activated toxin streptolysin O does not require a thiol group for cytolytic activity. Infect Immun. 1989 Aug;57(8):2553–2558. doi: 10.1128/iai.57.8.2553-2558.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rossjohn J., Feil S. C., McKinstry W. J., Tweten R. K., Parker M. W. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell. 1997 May 30;89(5):685–692. doi: 10.1016/s0092-8674(00)80251-2. [DOI] [PubMed] [Google Scholar]
  19. Scherrer R., Gerhardt P. Molecular sieving by the Bacillus megaterium cell wall and protoplast. J Bacteriol. 1971 Sep;107(3):718–735. doi: 10.1128/jb.107.3.718-735.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sekiya K., Satoh R., Danbara H., Futaesaku Y. A ring-shaped structure with a crown formed by streptolysin O on the erythrocyte membrane. J Bacteriol. 1993 Sep;175(18):5953–5961. doi: 10.1128/jb.175.18.5953-5961.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Song L., Hobaugh M. R., Shustak C., Cheley S., Bayley H., Gouaux J. E. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science. 1996 Dec 13;274(5294):1859–1866. doi: 10.1126/science.274.5294.1859. [DOI] [PubMed] [Google Scholar]
  22. Valeva A., Palmer M., Bhakdi S. Staphylococcal alpha-toxin: formation of the heptameric pore is partially cooperative and proceeds through multiple intermediate stages. Biochemistry. 1997 Oct 28;36(43):13298–13304. doi: 10.1021/bi971075r. [DOI] [PubMed] [Google Scholar]
  23. Valeva A., Weisser A., Walker B., Kehoe M., Bayley H., Bhakdi S., Palmer M. Molecular architecture of a toxin pore: a 15-residue sequence lines the transmembrane channel of staphylococcal alpha-toxin. EMBO J. 1996 Apr 15;15(8):1857–1864. [PMC free article] [PubMed] [Google Scholar]
  24. Walker B., Krishnasastry M., Zorn L., Bayley H. Assembly of the oligomeric membrane pore formed by Staphylococcal alpha-hemolysin examined by truncation mutagenesis. J Biol Chem. 1992 Oct 25;267(30):21782–21786. [PubMed] [Google Scholar]
  25. Weller U., Müller L., Messner M., Palmer M., Valeva A., Tranum-Jensen J., Agrawal P., Biermann C., Döbereiner A., Kehoe M. A. Expression of active streptolysin O in Escherichia coli as a maltose-binding-protein--streptolysin-O fusion protein. The N-terminal 70 amino acids are not required for hemolytic activity. Eur J Biochem. 1996 Feb 15;236(1):34–39. doi: 10.1111/j.1432-1033.1996.00034.x. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES