Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Mar 16;17(6):1656–1664. doi: 10.1093/emboj/17.6.1656

Crystal structure of the angiogenesis inhibitor endostatin at 1.5 A resolution.

E Hohenester 1, T Sasaki 1, B R Olsen 1, R Timpl 1
PMCID: PMC1170513  PMID: 9501087

Abstract

A number of extracellular proteins contain cryptic inhibitors of angiogenesis. Endostatin is a 20 kDa C-terminal proteolytic fragment of collagen XVIII that potently inhibits endothelial cell proliferation and angiogenesis. Therapy of experimental cancer with endostatin leads to tumour dormancy and does not induce resistance. We have expressed recombinant mouse endostatin and determined its crystal structure at 1.5 A resolution. The structure reveals a compact fold distantly related to the C-type lectin carbohydrate recognition domain and the hyaluronan-binding Link module. The high affinity of endostatin for heparin is explained by the presence of an extensive basic patch formed by 11 arginine residues. Endostatin may inhibit angiogenesis by binding to the heparan sulphate proteoglycans involved in growth factor signalling.

Full Text

The Full Text of this article is available as a PDF (698.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck L., Jr, D'Amore P. A. Vascular development: cellular and molecular regulation. FASEB J. 1997 Apr;11(5):365–373. [PubMed] [Google Scholar]
  2. Bertrand J. A., Pignol D., Bernard J. P., Verdier J. M., Dagorn J. C., Fontecilla-Camps J. C. Crystal structure of human lithostathine, the pancreatic inhibitor of stone formation. EMBO J. 1996 Jun 3;15(11):2678–2684. [PMC free article] [PubMed] [Google Scholar]
  3. Boehm T., Folkman J., Browder T., O'Reilly M. S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 1997 Nov 27;390(6658):404–407. doi: 10.1038/37126. [DOI] [PubMed] [Google Scholar]
  4. Bork P., Downing A. K., Kieffer B., Campbell I. D. Structure and distribution of modules in extracellular proteins. Q Rev Biophys. 1996 May;29(2):119–167. doi: 10.1017/s0033583500005783. [DOI] [PubMed] [Google Scholar]
  5. Brown K. J., Parish C. R. Histidine-rich glycoprotein and platelet factor 4 mask heparan sulfate proteoglycans recognized by acidic and basic fibroblast growth factor. Biochemistry. 1994 Nov 22;33(46):13918–13927. doi: 10.1021/bi00250a047. [DOI] [PubMed] [Google Scholar]
  6. Bussolino F., Mantovani A., Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem Sci. 1997 Jul;22(7):251–256. doi: 10.1016/s0968-0004(97)01074-8. [DOI] [PubMed] [Google Scholar]
  7. Clapp C., Martial J. A., Guzman R. C., Rentier-Delure F., Weiner R. I. The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology. 1993 Sep;133(3):1292–1299. doi: 10.1210/endo.133.3.7689950. [DOI] [PubMed] [Google Scholar]
  8. Cowtan K. D., Main P. Phase combination and cross validation in iterated density-modification calculations. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):43–48. doi: 10.1107/S090744499500761X. [DOI] [PubMed] [Google Scholar]
  9. Dameron K. M., Volpert O. V., Tainsky M. A., Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 1994 Sep 9;265(5178):1582–1584. doi: 10.1126/science.7521539. [DOI] [PubMed] [Google Scholar]
  10. Faham S., Hileman R. E., Fromm J. R., Linhardt R. J., Rees D. C. Heparin structure and interactions with basic fibroblast growth factor. Science. 1996 Feb 23;271(5252):1116–1120. doi: 10.1126/science.271.5252.1116. [DOI] [PubMed] [Google Scholar]
  11. Ferrara N., Clapp C., Weiner R. The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology. 1991 Aug;129(2):896–900. doi: 10.1210/endo-129-2-896. [DOI] [PubMed] [Google Scholar]
  12. Friesel R. E., Maciag T. Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J. 1995 Jul;9(10):919–925. doi: 10.1096/fasebj.9.10.7542215. [DOI] [PubMed] [Google Scholar]
  13. Fromm J. R., Hileman R. E., Caldwell E. E., Weiler J. M., Linhardt R. J. Pattern and spacing of basic amino acids in heparin binding sites. Arch Biochem Biophys. 1997 Jul 1;343(1):92–100. doi: 10.1006/abbi.1997.0147. [DOI] [PubMed] [Google Scholar]
  14. Good D. J., Polverini P. J., Rastinejad F., Le Beau M. M., Lemons R. S., Frazier W. A., Bouck N. P. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6624–6628. doi: 10.1073/pnas.87.17.6624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Graves B. J., Crowther R. L., Chandran C., Rumberger J. M., Li S., Huang K. S., Presky D. H., Familletti P. C., Wolitzky B. A., Burns D. K. Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature. 1994 Feb 10;367(6463):532–538. doi: 10.1038/367532a0. [DOI] [PubMed] [Google Scholar]
  16. Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996 Aug 9;86(3):353–364. doi: 10.1016/s0092-8674(00)80108-7. [DOI] [PubMed] [Google Scholar]
  17. Herr A. B., Ornitz D. M., Sasisekharan R., Venkataraman G., Waksman G. Heparin-induced self-association of fibroblast growth factor-2. Evidence for two oligomerization processes. J Biol Chem. 1997 Jun 27;272(26):16382–16389. doi: 10.1074/jbc.272.26.16382. [DOI] [PubMed] [Google Scholar]
  18. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  19. Holm L., Sander C. The FSSP database of structurally aligned protein fold families. Nucleic Acids Res. 1994 Sep;22(17):3600–3609. [PMC free article] [PubMed] [Google Scholar]
  20. Homandberg G. A., Williams J. E., Grant D., Schumacher B., Eisenstein R. Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth. Am J Pathol. 1985 Sep;120(3):327–332. [PMC free article] [PubMed] [Google Scholar]
  21. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  22. Kohda D., Morton C. J., Parkar A. A., Hatanaka H., Inagaki F. M., Campbell I. D., Day A. J. Solution structure of the link module: a hyaluronan-binding domain involved in extracellular matrix stability and cell migration. Cell. 1996 Sep 6;86(5):767–775. doi: 10.1016/s0092-8674(00)80151-8. [DOI] [PubMed] [Google Scholar]
  23. Kohfeldt E., Maurer P., Vannahme C., Timpl R. Properties of the extracellular calcium binding module of the proteoglycan testican. FEBS Lett. 1997 Sep 15;414(3):557–561. doi: 10.1016/s0014-5793(97)01070-3. [DOI] [PubMed] [Google Scholar]
  24. Mayer U., Nischt R., Pöschl E., Mann K., Fukuda K., Gerl M., Yamada Y., Timpl R. A single EGF-like motif of laminin is responsible for high affinity nidogen binding. EMBO J. 1993 May;12(5):1879–1885. doi: 10.1002/j.1460-2075.1993.tb05836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moy F. J., Safran M., Seddon A. P., Kitchen D., Böhlen P., Aviezer D., Yayon A., Powers R. Properly oriented heparin-decasaccharide-induced dimers are the biologically active form of basic fibroblast growth factor. Biochemistry. 1997 Apr 22;36(16):4782–4791. doi: 10.1021/bi9625455. [DOI] [PubMed] [Google Scholar]
  26. Muragaki Y., Timmons S., Griffith C. M., Oh S. P., Fadel B., Quertermous T., Olsen B. R. Mouse Col18a1 is expressed in a tissue-specific manner as three alternative variants and is localized in basement membrane zones. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8763–8767. doi: 10.1073/pnas.92.19.8763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Myers J. C., Kivirikko S., Gordon M. K., Dion A. S., Pihlajaniemi T. Identification of a previously unknown human collagen chain, alpha 1(XV), characterized by extensive interruptions in the triple-helical region. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10144–10148. doi: 10.1073/pnas.89.21.10144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. O'Reilly M. S., Boehm T., Shing Y., Fukai N., Vasios G., Lane W. S., Flynn E., Birkhead J. R., Olsen B. R., Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997 Jan 24;88(2):277–285. doi: 10.1016/s0092-8674(00)81848-6. [DOI] [PubMed] [Google Scholar]
  29. O'Reilly M. S., Holmgren L., Shing Y., Chen C., Rosenthal R. A., Moses M., Lane W. S., Cao Y., Sage E. H., Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994 Oct 21;79(2):315–328. doi: 10.1016/0092-8674(94)90200-3. [DOI] [PubMed] [Google Scholar]
  30. Oh S. P., Kamagata Y., Muragaki Y., Timmons S., Ooshima A., Olsen B. R. Isolation and sequencing of cDNAs for proteins with multiple domains of Gly-Xaa-Yaa repeats identify a distinct family of collagenous proteins. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4229–4233. doi: 10.1073/pnas.91.10.4229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Oh S. P., Warman M. L., Seldin M. F., Cheng S. D., Knoll J. H., Timmons S., Olsen B. R. Cloning of cDNA and genomic DNA encoding human type XVIII collagen and localization of the alpha 1(XVIII) collagen gene to mouse chromosome 10 and human chromosome 21. Genomics. 1994 Feb;19(3):494–499. doi: 10.1006/geno.1994.1098. [DOI] [PubMed] [Google Scholar]
  32. Pieces of eight: bioactive fragments of extracellular proteins as regulators of angiogenesis. Trends Cell Biol. 1997 May;7(5):182–186. doi: 10.1016/S0962-8924(97)01037-4. [DOI] [PubMed] [Google Scholar]
  33. Rehn M., Hintikka E., Pihlajaniemi T. Characterization of the mouse gene for the alpha 1 chain of type XVIII collagen (Col18a1) reveals that the three variant N-terminal polypeptide forms are transcribed from two widely separated promoters. Genomics. 1996 Mar 15;32(3):436–446. doi: 10.1006/geno.1996.0139. [DOI] [PubMed] [Google Scholar]
  34. Rehn M., Pihlajaniemi T. Alpha 1(XVIII), a collagen chain with frequent interruptions in the collagenous sequence, a distinct tissue distribution, and homology with type XV collagen. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4234–4238. doi: 10.1073/pnas.91.10.4234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rehn M., Pihlajaniemi T. Identification of three N-terminal ends of type XVIII collagen chains and tissue-specific differences in the expression of the corresponding transcripts. The longest form contains a novel motif homologous to rat and Drosophila frizzled proteins. J Biol Chem. 1995 Mar 3;270(9):4705–4711. doi: 10.1074/jbc.270.9.4705. [DOI] [PubMed] [Google Scholar]
  36. Risau W. Mechanisms of angiogenesis. Nature. 1997 Apr 17;386(6626):671–674. doi: 10.1038/386671a0. [DOI] [PubMed] [Google Scholar]
  37. Thompson L. D., Pantoliano M. W., Springer B. A. Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain. Biochemistry. 1994 Apr 5;33(13):3831–3840. doi: 10.1021/bi00179a006. [DOI] [PubMed] [Google Scholar]
  38. Tolsma S. S., Volpert O. V., Good D. J., Frazier W. A., Polverini P. J., Bouck N. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol. 1993 Jul;122(2):497–511. doi: 10.1083/jcb.122.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Weis W. I., Drickamer K., Hendrickson W. A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature. 1992 Nov 12;360(6400):127–134. doi: 10.1038/360127a0. [DOI] [PubMed] [Google Scholar]
  40. Weis W. I., Kahn R., Fourme R., Drickamer K., Hendrickson W. A. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science. 1991 Dec 13;254(5038):1608–1615. doi: 10.1126/science.1721241. [DOI] [PubMed] [Google Scholar]
  41. Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES