Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Mar 16;17(6):1710–1716. doi: 10.1093/emboj/17.6.1710

Turnover of bis-diphosphoinositol tetrakisphosphate in a smooth muscle cell line is regulated by beta2-adrenergic receptors through a cAMP-mediated, A-kinase-independent mechanism.

S T Safrany 1, S B Shears 1
PMCID: PMC1170518  PMID: 9501092

Abstract

Bis-diphosphoinositol tetrakisphosphate ([PP]2-InsP4 or 'InsP8') is a 'high-energy' inositol phosphate; we report that its metabolism is receptor-regulated in DDT1 MF-2 smooth muscle cells. This conclusion arose by pursuing the mechanism by which F- decreased cellular levels of [PP]2-InsP4 up to 70%. A similar effect was induced by elevating cyclic nucleotide levels, either with IBMX or by application of either Bt2cAMP (EC50 = 14.7 microM), Bt2cGMP (EC50 = 7.9 microM) or isoproterenol (EC50 = 0.4 nM). Isoproterenol (1 microM) decreased [PP]2-InsP4 levels 25% by 5 min, and 71% by 60 min. This novel, agonist-mediated regulation of [PP]2-InsP4 turnover was very specific; isoproterenol did not decrease the cellular levels of either inositol pentakisphosphate, inositol hexakisphosphate or other diphosphorylated inositol polyphosphates. Bradykinin, which activated phospholipase C, did not affect [PP]2-InsP4 levels. Regulation of [PP]2-InsP4 turnover by both isoproterenol and cell-permeant cyclic nucleotides was unaffected by inhibitors of protein kinases A and G. The effectiveness of the kinase inhibitors was confirmed by their ability to block phosphorylation of the cAMP response element-binding protein. Our results indicate a new signaling action of cAMP, and furnish an important focus for future research into the roles of diphosphorylated inositol phosphates in signal transduction.

Full Text

The Full Text of this article is available as a PDF (344.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert C., Safrany S. T., Bembenek M. E., Reddy K. M., Reddy K., Falck J., Bröcker M., Shears S. B., Mayr G. W. Biological variability in the structures of diphosphoinositol polyphosphates in Dictyostelium discoideum and mammalian cells. Biochem J. 1997 Oct 15;327(Pt 2):553–560. doi: 10.1042/bj3270553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asano T., Suzuki T., Tsuchiya M., Satoh S., Ikegaki I., Shibuya M., Suzuki Y., Hidaka H. Vasodilator actions of HA1077 in vitro and in vivo putatively mediated by the inhibition of protein kinase. Br J Pharmacol. 1989 Dec;98(4):1091–1100. doi: 10.1111/j.1476-5381.1989.tb12652.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  4. Blackmore P. F., Bocckino S. B., Waynick L. E., Exton J. H. Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-bisphosphate by calcium-mobilizing hormones and the control of cell calcium. Studies utilizing aluminum fluoride. J Biol Chem. 1985 Nov 25;260(27):14477–14483. [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Butt E., Eigenthaler M., Genieser H. G. (Rp)-8-pCPT-cGMPS, a novel cGMP-dependent protein kinase inhibitor. Eur J Pharmacol. 1994 Oct 14;269(2):265–268. doi: 10.1016/0922-4106(94)90095-7. [DOI] [PubMed] [Google Scholar]
  7. Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., Hidaka H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990 Mar 25;265(9):5267–5272. [PubMed] [Google Scholar]
  8. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  9. Ding C., Potter E. D., Qiu W., Coon S. L., Levine M. A., Guggino S. E. Cloning and widespread distribution of the rat rod-type cyclic nucleotide-gated cation channel. Am J Physiol. 1997 Apr;272(4 Pt 1):C1335–C1344. doi: 10.1152/ajpcell.1997.272.4.C1335. [DOI] [PubMed] [Google Scholar]
  10. Gamm D. M., Francis S. H., Angelotti T. P., Corbin J. D., Uhler M. D. The type II isoform of cGMP-dependent protein kinase is dimeric and possesses regulatory and catalytic properties distinct from the type I isoforms. J Biol Chem. 1995 Nov 10;270(45):27380–27388. doi: 10.1074/jbc.270.45.27380. [DOI] [PubMed] [Google Scholar]
  11. Garthwaite J., Boulton C. L. Nitric oxide signaling in the central nervous system. Annu Rev Physiol. 1995;57:683–706. doi: 10.1146/annurev.ph.57.030195.003343. [DOI] [PubMed] [Google Scholar]
  12. Ginty D. D., Kornhauser J. M., Thompson M. A., Bading H., Mayo K. E., Takahashi J. S., Greenberg M. E. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science. 1993 Apr 9;260(5105):238–241. doi: 10.1126/science.8097062. [DOI] [PubMed] [Google Scholar]
  13. Glennon M. C., Shears S. B. Turnover of inositol pentakisphosphates, inositol hexakisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes. Biochem J. 1993 Jul 15;293(Pt 2):583–590. doi: 10.1042/bj2930583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  15. Jiang H., Colbran J. L., Francis S. H., Corbin J. D. Direct evidence for cross-activation of cGMP-dependent protein kinase by cAMP in pig coronary arteries. J Biol Chem. 1992 Jan 15;267(2):1015–1019. [PubMed] [Google Scholar]
  16. Kapeller R., Cantley L. C. Phosphatidylinositol 3-kinase. Bioessays. 1994 Aug;16(8):565–576. doi: 10.1002/bies.950160810. [DOI] [PubMed] [Google Scholar]
  17. Laussmann T., Reddy K. M., Reddy K. K., Falck J. R., Vogel G. Diphospho-myo-inositol phosphates from Dictyostelium identified as D-6-diphospho-myo-inositol pentakisphosphate and D-5,6-bisdiphospho-myo-inositol tetrakisphosphate. Biochem J. 1997 Feb 15;322(Pt 1):31–33. doi: 10.1042/bj3220031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Menniti F. S., Miller R. N., Putney J. W., Jr, Shears S. B. Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J Biol Chem. 1993 Feb 25;268(6):3850–3856. [PubMed] [Google Scholar]
  19. Murthy K. S., Makhlouf G. M. Interaction of cA-kinase and cG-kinase in mediating relaxation of dispersed smooth muscle cells. Am J Physiol. 1995 Jan;268(1 Pt 1):C171–C180. doi: 10.1152/ajpcell.1995.268.1.C171. [DOI] [PubMed] [Google Scholar]
  20. Norris J. S., Garmer D. J., Brown F., Popovich K., Cornett L. E. Characteristics of an adenylate cyclase coupled beta 2-adrenergic receptor in a smooth muscle tumor cell line. J Recept Res. 1983;3(5):623–645. doi: 10.3109/10799898309041951. [DOI] [PubMed] [Google Scholar]
  21. Okada K., Brown E. J. Sodium fluoride reveals multiple pathways for regulation of surface expression of the C3b/C4b receptor (CR1) on human polymorphonuclear leukocytes. J Immunol. 1988 Feb 1;140(3):878–884. [PubMed] [Google Scholar]
  22. Roseboom P. H., Klein D. C. Norepinephrine stimulation of pineal cyclic AMP response element-binding protein phosphorylation: primary role of a beta-adrenergic receptor/cyclic AMP mechanism. Mol Pharmacol. 1995 Mar;47(3):439–449. [PubMed] [Google Scholar]
  23. Shears S. B., Ali N., Craxton A., Bembenek M. E. Synthesis and metabolism of bis-diphosphoinositol tetrakisphosphate in vitro and in vivo. J Biol Chem. 1995 May 5;270(18):10489–10497. doi: 10.1074/jbc.270.18.10489. [DOI] [PubMed] [Google Scholar]
  24. Sipma H., den Hertog A., Nelemans A. Ca(2+)-dependent and -independent mechanism of cyclic-AMP reduction: mediation by bradykinin B2 receptors. Br J Pharmacol. 1995 Jul;115(6):937–944. doi: 10.1111/j.1476-5381.1995.tb15901.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stephens L., Radenberg T., Thiel U., Vogel G., Khoo K. H., Dell A., Jackson T. R., Hawkins P. T., Mayr G. W. The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J Biol Chem. 1993 Feb 25;268(6):4009–4015. [PubMed] [Google Scholar]
  26. Sternweis P. C., Gilman A. G. Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4888–4891. doi: 10.1073/pnas.79.16.4888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Voglmaier S. M., Bembenek M. E., Kaplin A. I., Dormán G., Olszewski J. D., Prestwich G. D., Snyder S. H. Purified inositol hexakisphosphate kinase is an ATP synthase: diphosphoinositol pentakisphosphate as a high-energy phosphate donor. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4305–4310. doi: 10.1073/pnas.93.9.4305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yau K. W. Cyclic nucleotide-gated channels: an expanding new family of ion channels. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3481–3483. doi: 10.1073/pnas.91.9.3481. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES