Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Mar 16;17(6):1788–1798. doi: 10.1093/emboj/17.6.1788

Selectivity, sharing and competitive interactions in the regulation of Hoxb genes.

J Sharpe 1, S Nonchev 1, A Gould 1, J Whiting 1, R Krumlauf 1
PMCID: PMC1170526  PMID: 9501100

Abstract

The clustered organisation of Hox complexes is highly conserved in vertebrates and the reasons for this are believed to be linked with the regulatory mechanisms governing their expression. In analysis of the Hoxb4-Hoxb6 region of the HoxB complex we identified enhancers which lie in the intergenic region between Hoxb4 and Hoxb5, and which are capable of mediating the correct boundaries of neural and mesodermal expression for Hoxb5. We examined their regulatory properties in the context of the local genomic region spanning the two genes by transgenic analysis, in which each promoter was independently marked with a different reporter, to monitor simultaneously the relative transcriptional read-outs from each gene. Our analysis revealed that within this intergenic region: (i) a limb and a neural enhancer selectively activate Hoxb4 as opposed to Hoxb5; (ii) a separate neural enhancer is able to activate both genes, but expression is dependent upon competition between the two promoters for the enhancer and is influenced by the local genomic context; (iii) mesodermal enhancer activities can be shared between the genes. We found similar types of regulatory interactions between Hoxb5 and Hoxb6. Together these results provide evidence for three separate general mechanisms: selectivity, competition and sharing, that control the balance of cis-regulatory interactions necessary for generating the proper spatial and temporal patterns of Hox gene expression. We suggest that these mechanisms are part of a regulatory basis for maintenance of Hox organisation.

Full Text

The Full Text of this article is available as a PDF (564.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aparicio S., Morrison A., Gould A., Gilthorpe J., Chaudhuri C., Rigby P., Krumlauf R., Brenner S. Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1684–1688. doi: 10.1073/pnas.92.5.1684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becker D., Jiang Z., Knödler P., Deinard A. S., Eid R., Kidd K. K., Shashikant C. S., Ruddle F. H., Schughart K. Conserved regulatory element involved in the early onset of Hoxb6 gene expression. Dev Dyn. 1996 Jan;205(1):73–81. doi: 10.1002/(SICI)1097-0177(199601)205:1<73::AID-AJA7>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  3. Behringer R. R., Crotty D. A., Tennyson V. M., Brinster R. L., Palmiter R. D., Wolgemuth D. J. Sequences 5' of the homeobox of the Hox-1.4 gene direct tissue-specific expression of lacZ during mouse development. Development. 1993 Mar;117(3):823–833. doi: 10.1242/dev.117.3.823. [DOI] [PubMed] [Google Scholar]
  4. Boncinelli E., Simeone A., Acampora D., Mavilio F. HOX gene activation by retinoic acid. Trends Genet. 1991 Oct;7(10):329–334. doi: 10.1016/0168-9525(91)90423-n. [DOI] [PubMed] [Google Scholar]
  5. Burke A. C., Nelson C. E., Morgan B. A., Tabin C. Hox genes and the evolution of vertebrate axial morphology. Development. 1995 Feb;121(2):333–346. doi: 10.1242/dev.121.2.333. [DOI] [PubMed] [Google Scholar]
  6. Burke T. W., Kadonaga J. T. Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev. 1996 Mar 15;10(6):711–724. doi: 10.1101/gad.10.6.711. [DOI] [PubMed] [Google Scholar]
  7. Burke T. W., Kadonaga J. T. The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes Dev. 1997 Nov 15;11(22):3020–3031. doi: 10.1101/gad.11.22.3020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carroll S. B. Homeotic genes and the evolution of arthropods and chordates. Nature. 1995 Aug 10;376(6540):479–485. doi: 10.1038/376479a0. [DOI] [PubMed] [Google Scholar]
  9. Charité J., de Graaff W., Vogels R., Meijlink F., Deschamps J. Regulation of the Hoxb-8 gene: synergism between multimerized cis-acting elements increases responsiveness to positional information. Dev Biol. 1995 Oct;171(2):294–305. doi: 10.1006/dbio.1995.1282. [DOI] [PubMed] [Google Scholar]
  10. Dillon N., Grosveld F. Transcriptional regulation of multigene loci: multilevel control. Trends Genet. 1993 Apr;9(4):134–137. doi: 10.1016/0168-9525(93)90208-y. [DOI] [PubMed] [Google Scholar]
  11. Dollé P., Izpisúa-Belmonte J. C., Falkenstein H., Renucci A., Duboule D. Coordinate expression of the murine Hox-5 complex homoeobox-containing genes during limb pattern formation. Nature. 1989 Dec 14;342(6251):767–772. doi: 10.1038/342767a0. [DOI] [PubMed] [Google Scholar]
  12. Duboule D., Dollé P. The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J. 1989 May;8(5):1497–1505. doi: 10.1002/j.1460-2075.1989.tb03534.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Duboule D. The vertebrate limb: a model system to study the Hox/HOM gene network during development and evolution. Bioessays. 1992 Jun;14(6):375–384. doi: 10.1002/bies.950140606. [DOI] [PubMed] [Google Scholar]
  14. Eid R., Koseki H., Schughart K. Analysis of LacZ reporter genes in transgenic embryos suggests the presence of several cis-acting regulatory elements in the murine Hoxb-6 gene. Dev Dyn. 1993 Mar;196(3):205–216. doi: 10.1002/aja.1001960307. [DOI] [PubMed] [Google Scholar]
  15. Gaunt S. J., Singh P. B. Homeogene expression patterns and chromosomal imprinting. Trends Genet. 1990 Jul;6(7):208–212. [PubMed] [Google Scholar]
  16. Godsave S., Dekker E. J., Holling T., Pannese M., Boncinelli E., Durston A. Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm. Dev Biol. 1994 Dec;166(2):465–476. doi: 10.1006/dbio.1994.1330. [DOI] [PubMed] [Google Scholar]
  17. Gould A., Morrison A., Sproat G., White R. A., Krumlauf R. Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev. 1997 Apr 1;11(7):900–913. doi: 10.1101/gad.11.7.900. [DOI] [PubMed] [Google Scholar]
  18. Graham A., Papalopulu N., Krumlauf R. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell. 1989 May 5;57(3):367–378. doi: 10.1016/0092-8674(89)90912-4. [DOI] [PubMed] [Google Scholar]
  19. Graham A., Papalopulu N., Lorimer J., McVey J. H., Tuddenham E. G., Krumlauf R. Characterization of a murine homeo box gene, Hox-2.6, related to the Drosophila Deformed gene. Genes Dev. 1988 Nov;2(11):1424–1438. doi: 10.1101/gad.2.11.1424. [DOI] [PubMed] [Google Scholar]
  20. Gutman A., Gilthorpe J., Rigby P. W. Multiple positive and negative regulatory elements in the promoter of the mouse homeobox gene Hoxb-4. Mol Cell Biol. 1994 Dec;14(12):8143–8154. doi: 10.1128/mcb.14.12.8143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gérard M., Chen J. Y., Gronemeyer H., Chambon P., Duboule D., Zákány J. In vivo targeted mutagenesis of a regulatory element required for positioning the Hoxd-11 and Hoxd-10 expression boundaries. Genes Dev. 1996 Sep 15;10(18):2326–2334. doi: 10.1101/gad.10.18.2326. [DOI] [PubMed] [Google Scholar]
  22. Halliday A. L., Cepko C. L. Generation and migration of cells in the developing striatum. Neuron. 1992 Jul;9(1):15–26. doi: 10.1016/0896-6273(92)90216-z. [DOI] [PubMed] [Google Scholar]
  23. Itasaki N., Sharpe J., Morrison A., Krumlauf R. Reprogramming Hox expression in the vertebrate hindbrain: influence of paraxial mesoderm and rhombomere transposition. Neuron. 1996 Mar;16(3):487–500. doi: 10.1016/s0896-6273(00)80069-0. [DOI] [PubMed] [Google Scholar]
  24. Krumlauf R., Holland P. W., McVey J. H., Hogan B. L. Developmental and spatial patterns of expression of the mouse homeobox gene, Hox 2.1. Development. 1987 Apr;99(4):603–617. doi: 10.1242/dev.99.4.603. [DOI] [PubMed] [Google Scholar]
  25. Krumlauf R. Hox genes in vertebrate development. Cell. 1994 Jul 29;78(2):191–201. doi: 10.1016/0092-8674(94)90290-9. [DOI] [PubMed] [Google Scholar]
  26. Li X., Noll M. Compatibility between enhancers and promoters determines the transcriptional specificity of gooseberry and gooseberry neuro in the Drosophila embryo. EMBO J. 1994 Jan 15;13(2):400–406. doi: 10.1002/j.1460-2075.1994.tb06274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maconochie M. K., Nonchev S., Studer M., Chan S. K., Pöpperl H., Sham M. H., Mann R. S., Krumlauf R. Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev. 1997 Jul 15;11(14):1885–1895. doi: 10.1101/gad.11.14.1885. [DOI] [PubMed] [Google Scholar]
  28. Manzanares M., Cordes S., Kwan C. T., Sham M. H., Barsh G. S., Krumlauf R. Segmental regulation of Hoxb-3 by kreisler. Nature. 1997 May 8;387(6629):191–195. doi: 10.1038/387191a0. [DOI] [PubMed] [Google Scholar]
  29. Marshall H., Studer M., Pöpperl H., Aparicio S., Kuroiwa A., Brenner S., Krumlauf R. A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature. 1994 Aug 18;370(6490):567–571. doi: 10.1038/370567a0. [DOI] [PubMed] [Google Scholar]
  30. McGinnis W., Krumlauf R. Homeobox genes and axial patterning. Cell. 1992 Jan 24;68(2):283–302. doi: 10.1016/0092-8674(92)90471-n. [DOI] [PubMed] [Google Scholar]
  31. Merli C., Bergstrom D. E., Cygan J. A., Blackman R. K. Promoter specificity mediates the independent regulation of neighboring genes. Genes Dev. 1996 May 15;10(10):1260–1270. doi: 10.1101/gad.10.10.1260. [DOI] [PubMed] [Google Scholar]
  32. Morrison A., Ariza-McNaughton L., Gould A., Featherstone M., Krumlauf R. HOXD4 and regulation of the group 4 paralog genes. Development. 1997 Aug;124(16):3135–3146. doi: 10.1242/dev.124.16.3135. [DOI] [PubMed] [Google Scholar]
  33. Morrison A., Chaudhuri C., Ariza-McNaughton L., Muchamore I., Kuroiwa A., Krumlauf R. Comparative analysis of chicken Hoxb-4 regulation in transgenic mice. Mech Dev. 1995 Sep;53(1):47–59. doi: 10.1016/0925-4773(95)00423-8. [DOI] [PubMed] [Google Scholar]
  34. Morrison A., Moroni M. C., Ariza-McNaughton L., Krumlauf R., Mavilio F. In vitro and transgenic analysis of a human HOXD4 retinoid-responsive enhancer. Development. 1996 Jun;122(6):1895–1907. doi: 10.1242/dev.122.6.1895. [DOI] [PubMed] [Google Scholar]
  35. Orlando V., Paro R. Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr Opin Genet Dev. 1995 Apr;5(2):174–179. doi: 10.1016/0959-437x(95)80005-0. [DOI] [PubMed] [Google Scholar]
  36. Pirrotta V. PcG complexes and chromatin silencing. Curr Opin Genet Dev. 1997 Apr;7(2):249–258. doi: 10.1016/s0959-437x(97)80135-9. [DOI] [PubMed] [Google Scholar]
  37. Pöpperl H., Bienz M., Studer M., Chan S. K., Aparicio S., Brenner S., Mann R. S., Krumlauf R. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell. 1995 Jun 30;81(7):1031–1042. doi: 10.1016/s0092-8674(05)80008-x. [DOI] [PubMed] [Google Scholar]
  38. Pöpperl H., Featherstone M. S. Identification of a retinoic acid response element upstream of the murine Hox-4.2 gene. Mol Cell Biol. 1993 Jan;13(1):257–265. doi: 10.1128/mcb.13.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schughart K., Bieberich C. J., Eid R., Ruddle F. H. A regulatory region from the mouse Hox-2.2 promoter directs gene expression into developing limbs. Development. 1991 Jul;112(3):807–811. doi: 10.1242/dev.112.3.807. [DOI] [PubMed] [Google Scholar]
  40. Sham M. H., Hunt P., Nonchev S., Papalopulu N., Graham A., Boncinelli E., Krumlauf R. Analysis of the murine Hox-2.7 gene: conserved alternative transcripts with differential distributions in the nervous system and the potential for shared regulatory regions. EMBO J. 1992 May;11(5):1825–1836. doi: 10.1002/j.1460-2075.1992.tb05234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sham M. H., Vesque C., Nonchev S., Marshall H., Frain M., Gupta R. D., Whiting J., Wilkinson D., Charnay P., Krumlauf R. The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation. Cell. 1993 Jan 29;72(2):183–196. doi: 10.1016/0092-8674(93)90659-e. [DOI] [PubMed] [Google Scholar]
  42. Simeone A., Pannese M., Acampora D., D'Esposito M., Boncinelli E. At least three human homeoboxes on chromosome 12 belong to the same transcription unit. Nucleic Acids Res. 1988 Jun 24;16(12):5379–5390. doi: 10.1093/nar/16.12.5379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Studer M., Pöpperl H., Marshall H., Kuroiwa A., Krumlauf R. Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science. 1994 Sep 16;265(5179):1728–1732. doi: 10.1126/science.7916164. [DOI] [PubMed] [Google Scholar]
  44. Valarché I., de Graaff W., Deschamps J. A 3' remote control region is a candidate to modulate Hoxb-8 expression boundaries. Int J Dev Biol. 1997 Oct;41(5):705–714. [PubMed] [Google Scholar]
  45. Vogels R., Charité J., de Graaff W., Deschamps J. Proximal cis-acting elements cooperate to set Hoxb-7 (Hox-2.3) expression boundaries in transgenic mice. Development. 1993 May;118(1):71–82. doi: 10.1242/dev.118.1.71. [DOI] [PubMed] [Google Scholar]
  46. Wall N. A., Jones C. M., Hogan B. L., Wright C. V. Expression and modification of Hox 2.1 protein in mouse embryos. Mech Dev. 1992 May;37(3):111–120. doi: 10.1016/0925-4773(92)90073-s. [DOI] [PubMed] [Google Scholar]
  47. Whiting J., Marshall H., Cook M., Krumlauf R., Rigby P. W., Stott D., Allemann R. K. Multiple spatially specific enhancers are required to reconstruct the pattern of Hox-2.6 gene expression. Genes Dev. 1991 Nov;5(11):2048–2059. doi: 10.1101/gad.5.11.2048. [DOI] [PubMed] [Google Scholar]
  48. Wijgerde M., Grosveld F., Fraser P. Transcription complex stability and chromatin dynamics in vivo. Nature. 1995 Sep 21;377(6546):209–213. doi: 10.1038/377209a0. [DOI] [PubMed] [Google Scholar]
  49. Zákány J., Gérard M., Favier B., Duboule D. Deletion of a HoxD enhancer induces transcriptional heterochrony leading to transposition of the sacrum. EMBO J. 1997 Jul 16;16(14):4393–4402. doi: 10.1093/emboj/16.14.4393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. van der Hoeven F., Zákány J., Duboule D. Gene transpositions in the HoxD complex reveal a hierarchy of regulatory controls. Cell. 1996 Jun 28;85(7):1025–1035. doi: 10.1016/s0092-8674(00)81303-3. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES