Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Mar 16;17(6):1829–1837. doi: 10.1093/emboj/17.6.1829

Stationary phase induction of dnaN and recF, two genes of Escherichia coli involved in DNA replication and repair.

M Villarroya 1, I Pérez-Roger 1, F Macián 1, M E Armengod 1
PMCID: PMC1170530  PMID: 9501104

Abstract

The beta subunit of DNA polymerase III holoenzyme, the Escherichia coli chromosomal replicase, is a sliding DNA clamp responsible for tethering the polymerase to DNA and endowing it with high processivity. The gene encoding beta, dnaN, maps between dnaA and recF, which are involved in initiation of DNA replication at oriC and resumption of DNA replication at disrupted replication forks, respectively. In exponentially growing cells, dnaN and recF are expressed predominantly from the dnaA promoters. However, we have found that stationary phase induction of the dnaN promoters drastically changes the expression pattern of the dnaA operon genes. As a striking consequence, synthesis of the beta subunit and RecF protein increases when cell metabolism is slowing down. Such an induction is dependent on the stationary phase sigma factor, RpoS, although the accumulation of this factor alone is not sufficient to activate the dnaN promoters. These promoters are located in DNA regions without static bending, and the -35 hexamer element is essential for their RpoS-dependent induction. Our results suggest that stationary phase-dependent mechanisms have evolved in order to coordinate expression of dnaN and recF independently of the dnaA regulatory region. These mechanisms might be part of a developmental programme aimed at maintaining DNA integrity under stress conditions.

Full Text

The Full Text of this article is available as a PDF (305.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldea M., Garrido T., Pla J., Vicente M. Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters. EMBO J. 1990 Nov;9(11):3787–3794. doi: 10.1002/j.1460-2075.1990.tb07592.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armengod M. E., García-Sogo M., Lambíes E. Transcriptional organization of the dnaN and recF genes of Escherichia coli K-12. J Biol Chem. 1988 Aug 25;263(24):12109–12114. [PubMed] [Google Scholar]
  3. Armengod M. E., García-Sogo M., Pérez-Roger I., Macián F., Navarro-Aviñ J. P. Tandem transcription termination sites in the dnaN gene of Escherichia coli. J Biol Chem. 1991 Oct 15;266(29):19725–19730. [PubMed] [Google Scholar]
  4. Armengod M. E., Lambíes E. Overlapping arrangement of the recF and dnaN operons of Escherichia coli; positive and negative control sequences. Gene. 1986;43(3):183–196. doi: 10.1016/0378-1119(86)90206-4. [DOI] [PubMed] [Google Scholar]
  5. Bierne H., Michel B. When replication forks stop. Mol Microbiol. 1994 Jul;13(1):17–23. doi: 10.1111/j.1365-2958.1994.tb00398.x. [DOI] [PubMed] [Google Scholar]
  6. Bohannon D. E., Connell N., Keener J., Tormo A., Espinosa-Urgel M., Zambrano M. M., Kolter R. Stationary-phase-inducible "gearbox" promoters: differential effects of katF mutations and role of sigma 70. J Bacteriol. 1991 Jul;173(14):4482–4492. doi: 10.1128/jb.173.14.4482-4492.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Canceill D., Ehrlich S. D. Copy-choice recombination mediated by DNA polymerase III holoenzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6647–6652. doi: 10.1073/pnas.93.13.6647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Courcelle J., Carswell-Crumpton C., Hanawalt P. C. recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3714–3719. doi: 10.1073/pnas.94.8.3714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ding Q., Kusano S., Villarejo M., Ishihama A. Promoter selectivity control of Escherichia coli RNA polymerase by ionic strength: differential recognition of osmoregulated promoters by E sigma D and E sigma S holoenzymes. Mol Microbiol. 1995 May;16(4):649–656. doi: 10.1111/j.1365-2958.1995.tb02427.x. [DOI] [PubMed] [Google Scholar]
  10. Espinosa-Urgel M., Chamizo C., Tormo A. A consensus structure for sigma S-dependent promoters. Mol Microbiol. 1996 Aug;21(3):657–659. doi: 10.1111/j.1365-2958.1996.tb02573.x. [DOI] [PubMed] [Google Scholar]
  11. Espinosa-Urgel M., Tormo A. Sigma s-dependent promoters in Escherichia coli are located in DNA regions with intrinsic curvature. Nucleic Acids Res. 1993 Aug 11;21(16):3667–3670. doi: 10.1093/nar/21.16.3667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Froelich J. M., Phuong T. K., Zyskind J. W. Fis binding in the dnaA operon promoter region. J Bacteriol. 1996 Oct;178(20):6006–6012. doi: 10.1128/jb.178.20.6006-6012.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hengge-Aronis R. Back to log phase: sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol Microbiol. 1996 Sep;21(5):887–893. doi: 10.1046/j.1365-2958.1996.511405.x. [DOI] [PubMed] [Google Scholar]
  14. Hengge-Aronis R., Lange R., Henneberg N., Fischer D. Osmotic regulation of rpoS-dependent genes in Escherichia coli. J Bacteriol. 1993 Jan;175(1):259–265. doi: 10.1128/jb.175.1.259-265.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaasch M., Kaasch J., Quiñones A. Expression of the dnaN and dnaQ genes of Escherichia coli is inducible by mitomycin C. Mol Gen Genet. 1989 Oct;219(1-2):187–192. doi: 10.1007/BF00261175. [DOI] [PubMed] [Google Scholar]
  16. Kelman Z., O'Donnell M. DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu Rev Biochem. 1995;64:171–200. doi: 10.1146/annurev.bi.64.070195.001131. [DOI] [PubMed] [Google Scholar]
  17. Kleiner D., Paul W., Merrick M. J. Construction of multicopy expression vectors for regulated over-production of proteins in Klebsiella pneumoniae and other enteric bacteria. J Gen Microbiol. 1988 Jul;134(7):1779–1784. doi: 10.1099/00221287-134-7-1779. [DOI] [PubMed] [Google Scholar]
  18. Kolb A., Kotlarz D., Kusano S., Ishihama A. Selectivity of the Escherichia coli RNA polymerase E sigma 38 for overlapping promoters and ability to support CRP activation. Nucleic Acids Res. 1995 Mar 11;23(5):819–826. doi: 10.1093/nar/23.5.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kolter R., Siegele D. A., Tormo A. The stationary phase of the bacterial life cycle. Annu Rev Microbiol. 1993;47:855–874. doi: 10.1146/annurev.mi.47.100193.004231. [DOI] [PubMed] [Google Scholar]
  20. Kusano S., Ishihama A. Stimulatory effect of trehalose on formation and activity of Escherichia coli RNA polymerase E sigma38 holoenzyme. J Bacteriol. 1997 Jun;179(11):3649–3654. doi: 10.1128/jb.179.11.3649-3654.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee Y. S., Kim H., Hwang D. S. Transcriptional activation of the dnaA gene encoding the initiator for oriC replication by IciA protein, an inhibitor of in vitro oriC replication in Escherichia coli. Mol Microbiol. 1996 Jan;19(2):389–396. doi: 10.1046/j.1365-2958.1996.485902.x. [DOI] [PubMed] [Google Scholar]
  22. Macián F., Pérez-Roger I., Armengod M. E. An improved vector system for constructing transcriptional lacZ fusions: analysis of regulation of the dnaA, dnaN, recF and gyrB genes of Escherichia coli. Gene. 1994 Jul 22;145(1):17–24. doi: 10.1016/0378-1119(94)90317-4. [DOI] [PubMed] [Google Scholar]
  23. Muffler A., Barth M., Marschall C., Hengge-Aronis R. Heat shock regulation of sigmaS turnover: a role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli. J Bacteriol. 1997 Jan;179(2):445–452. doi: 10.1128/jb.179.2.445-452.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Muffler A., Fischer D., Altuvia S., Storz G., Hengge-Aronis R. The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. EMBO J. 1996 Mar 15;15(6):1333–1339. [PMC free article] [PubMed] [Google Scholar]
  25. Ohmori H., Kimura M., Nagata T., Sakakibara Y. Structural analysis of the dnaA and dnaN genes of Escherichia coli. Gene. 1984 May;28(2):159–170. doi: 10.1016/0378-1119(84)90253-1. [DOI] [PubMed] [Google Scholar]
  26. Ozaki M., Fujita N., Wada A., Ishihama A. Promoter selectivity of the stationary-phase forms of Escherichia coli RNA polymerase and conversion in vitro of the S1 form enzyme into a log-phase enzyme-like form. Nucleic Acids Res. 1992 Jan 25;20(2):257–261. doi: 10.1093/nar/20.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pratt L. A., Silhavy T. J. The response regulator SprE controls the stability of RpoS. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2488–2492. doi: 10.1073/pnas.93.6.2488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pérez-Roger I., García-Sogo M., Navarro-Aviñ J. P., López-Acedo C., Macián F., Armengod M. E. Positive and negative regulatory elements in the dnaA-dnaN-recF operon of Escherichia coli. Biochimie. 1991 Feb-Mar;73(2-3):329–334. doi: 10.1016/0300-9084(91)90220-u. [DOI] [PubMed] [Google Scholar]
  29. Pérez-Roger I., Macián F., Armengod M. E. Transcription termination in the Escherichia coli dnaA gene is not mediated by the internal DnaA box. J Bacteriol. 1995 Apr;177(7):1896–1899. doi: 10.1128/jb.177.7.1896-1899.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Quiñones A., Kaasch J., Kaasch M., Messer W. Induction of dnaN and dnaQ gene expression in Escherichia coli by alkylation damage to DNA. EMBO J. 1989 Feb;8(2):587–593. doi: 10.1002/j.1460-2075.1989.tb03413.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Quiñones A., Messer W. Discoordinate gene expression in the dnaA-dnaN operon of Escherichia coli. Mol Gen Genet. 1988 Jul;213(1):118–124. doi: 10.1007/BF00333407. [DOI] [PubMed] [Google Scholar]
  32. Schweder T., Lee K. H., Lomovskaya O., Matin A. Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease. J Bacteriol. 1996 Jan;178(2):470–476. doi: 10.1128/jb.178.2.470-476.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Siegele D. A., Kolter R. Life after log. J Bacteriol. 1992 Jan;174(2):345–348. doi: 10.1128/jb.174.2.345-348.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Skaliter R., Paz-Elizur T., Livneh Z. A smaller form of the sliding clamp subunit of DNA polymerase III is induced by UV irradiation in Escherichia coli. J Biol Chem. 1996 Feb 2;271(5):2478–2481. [PubMed] [Google Scholar]
  35. Slauch J. M., Silhavy T. J. Genetic fusions as experimental tools. Methods Enzymol. 1991;204:213–248. doi: 10.1016/0076-6879(91)04011-c. [DOI] [PubMed] [Google Scholar]
  36. Sledjeski D. D., Gupta A., Gottesman S. The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J. 1996 Aug 1;15(15):3993–4000. [PMC free article] [PubMed] [Google Scholar]
  37. Tadmor Y., Bergstein M., Skaliter R., Shwartz H., Livneh Z. Beta subunit of DNA polymerase III holoenzyme is induced upon ultraviolet irradiation or nalidixic acid treatment of Escherichia coli. Mutat Res. 1994 Jul 1;308(1):53–64. doi: 10.1016/0027-5107(94)90198-8. [DOI] [PubMed] [Google Scholar]
  38. Wende M., Quinones A., Diederich L., Jueterbock W. R., Messer W. Transcription termination in the dnaA gene. Mol Gen Genet. 1991 Dec;230(3):486–490. doi: 10.1007/BF00280306. [DOI] [PubMed] [Google Scholar]
  39. Yamagishi M., Matsushima H., Wada A., Sakagami M., Fujita N., Ishihama A. Regulation of the Escherichia coli rmf gene encoding the ribosome modulation factor: growth phase- and growth rate-dependent control. EMBO J. 1993 Feb;12(2):625–630. doi: 10.1002/j.1460-2075.1993.tb05695.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES