Abstract
The facB gene is required for acetate induction of acetamidase (amdS) and the acetate utilization enzymes acetyl-CoA synthase (facA), isocitrate lyase (acuD) and malate synthase (acuE) in Aspergillus nidulans. The facB gene encodes a transcriptional activator with a GAL4-type Zn(II)2Cys6 zinc binuclear cluster DNA-binding domain which is shown to be required for DNA binding. In vitro DNA-binding sites for FacB in the 5' regions of the amdS, facA, acuD and acuE genes have been identified. Mutations in amdS FacB DNA-binding sites affected expression of an amdS-lacZ reporter in vivo and altered the affinity of in vitro DNA binding. This study shows that the FacB Zn(II)2Cys6 cluster binds to dissimilar sites which show similarity in form but not sequence with DNA-binding sites of other Zn(II)2Cys6 proteins. Sequences with homology to FacB sites are found in the 5' regions of genes regulated by the closely related yeast Zn(II)2Cys6 protein CAT8.
Full Text
The Full Text of this article is available as a PDF (596.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrianopoulos A., Timberlake W. E. The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol. 1994 Apr;14(4):2503–2515. doi: 10.1128/mcb.14.4.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Apirion D. The two-way selection of mutants and revertants in respect of acetate utilization and resistance to fluoro-acetate in Aspergillus nidulans. Genet Res. 1965 Nov;6(3):317–329. doi: 10.1017/s0016672300004213. [DOI] [PubMed] [Google Scholar]
- Armitt S., McCullough W., Roberts C. F. Analysis of acetate non-utilizing (acu) mutants in Aspergillus nidulans. J Gen Microbiol. 1976 Feb;92(2):263–282. doi: 10.1099/00221287-92-2-263. [DOI] [PubMed] [Google Scholar]
- Baleja J. D., Marmorstein R., Harrison S. C., Wagner G. Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae. Nature. 1992 Apr 2;356(6368):450–453. doi: 10.1038/356450a0. [DOI] [PubMed] [Google Scholar]
- Baum J. A., Geever R., Giles N. H. Expression of qa-1F activator protein: identification of upstream binding sites in the qa gene cluster and localization of the DNA-binding domain. Mol Cell Biol. 1987 Mar;7(3):1256–1266. doi: 10.1128/mcb.7.3.1256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowyer P., De Lucas J. R., Turner G. Regulation of the expression of the isocitrate lyase gene (acuD) of Aspergillus nidulans. Mol Gen Genet. 1994 Feb;242(4):484–489. doi: 10.1007/BF00281801. [DOI] [PubMed] [Google Scholar]
- Brunelle A., Schleif R. F. Missing contact probing of DNA-protein interactions. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6673–6676. doi: 10.1073/pnas.84.19.6673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carey M., Kakidani H., Leatherwood J., Mostashari F., Ptashne M. An amino-terminal fragment of GAL4 binds DNA as a dimer. J Mol Biol. 1989 Oct 5;209(3):423–432. doi: 10.1016/0022-2836(89)90007-7. [DOI] [PubMed] [Google Scholar]
- Connerton I. F., Fincham J. R., Sandeman R. A., Hynes M. J. Comparison and cross-species expression of the acetyl-CoA synthetase genes of the Ascomycete fungi, Aspergillus nidulans and Neurospora crassa. Mol Microbiol. 1990 Mar;4(3):451–460. doi: 10.1111/j.1365-2958.1990.tb00611.x. [DOI] [PubMed] [Google Scholar]
- Corrick C. M., Twomey A. P., Hynes M. J. The nucleotide sequence of the amdS gene of Aspergillus nidulans and the molecular characterization of 5' mutations. Gene. 1987;53(1):63–71. doi: 10.1016/0378-1119(87)90093-x. [DOI] [PubMed] [Google Scholar]
- Cove D. J. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966 Jan 11;113(1):51–56. doi: 10.1016/s0926-6593(66)80120-0. [DOI] [PubMed] [Google Scholar]
- Davis M. A., Cobbett C. S., Hynes M. J. An amdS-lacZ fusion for studying gene regulation in Aspergillus. Gene. 1988 Mar 31;63(2):199–212. doi: 10.1016/0378-1119(88)90525-2. [DOI] [PubMed] [Google Scholar]
- De Lucas J. R., Gregory S., Turner G. Analysis of the regulation of the Aspergillus nidulans acuD gene, encoding isocitrate lyase, by construction of a hybrid promoter. Mol Gen Genet. 1994 Jun 15;243(6):654–659. doi: 10.1007/BF00279574. [DOI] [PubMed] [Google Scholar]
- Delahodde A., Delaveau T., Jacq C. Positive autoregulation of the yeast transcription factor Pdr3p, which is involved in control of drug resistance. Mol Cell Biol. 1995 Aug;15(8):4043–4051. doi: 10.1128/mcb.15.8.4043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernández E., Moreno F., Rodicio R. The ICL1 gene from Saccharomyces cerevisiae. Eur J Biochem. 1992 Mar 15;204(3):983–990. doi: 10.1111/j.1432-1033.1992.tb16720.x. [DOI] [PubMed] [Google Scholar]
- Flavell R. B., Fincham J. R. Acetate-nonutilizing mutants of Neurospora rassa. II. Biochemical deficiencies and the roles of certain enzymes. J Bacteriol. 1968 Mar;95(3):1063–1068. doi: 10.1128/jb.95.3.1063-1068.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flavell R. B., Fincham J. R. Acetate-onutilizing mutants of Neurospora crassa. I. Mutant isolation, complementation studies, and linkage relationships. J Bacteriol. 1968 Mar;95(3):1056–1062. doi: 10.1128/jb.95.3.1056-1062.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu Y. H., Feng B., Evans S., Marzluf G. A. Sequence-specific DNA binding by NIT4, the pathway-specific regulatory protein that mediates nitrate induction in Neurospora. Mol Microbiol. 1995 Mar;15(5):935–942. doi: 10.1111/j.1365-2958.1995.tb02362.x. [DOI] [PubMed] [Google Scholar]
- Gainey L. D., Connerton I. F., Lewis E. H., Turner G., Ballance D. J. Characterization of the glyoxysomal isocitrate lyase genes of Aspergillus nidulans (acuD) and Neurospora crassa (acu-3). Curr Genet. 1992 Jan;21(1):43–47. doi: 10.1007/BF00318653. [DOI] [PubMed] [Google Scholar]
- Gardner K. H., Pan T., Narula S., Rivera E., Coleman J. E. Structure of the binuclear metal-binding site in the GAL4 transcription factor. Biochemistry. 1991 Nov 26;30(47):11292–11302. doi: 10.1021/bi00111a015. [DOI] [PubMed] [Google Scholar]
- Geever R. F., Huiet L., Baum J. A., Tyler B. M., Patel V. B., Rutledge B. J., Case M. E., Giles N. H. DNA sequence, organization and regulation of the qa gene cluster of Neurospora crassa. J Mol Biol. 1989 May 5;207(1):15–34. doi: 10.1016/0022-2836(89)90438-5. [DOI] [PubMed] [Google Scholar]
- Gough J. A., Murray N. E. Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol. 1983 May 5;166(1):1–19. doi: 10.1016/s0022-2836(83)80047-3. [DOI] [PubMed] [Google Scholar]
- Gouka R. J., van Hartingsveldt W., Bovenberg R. A., van Zeijl C. M., van den Hondel C. A., van Gorcom R. F. Development of a new transformant selection system for Penicillium chrysogenum: isolation and characterization of the P. chrysogenum acetyl-coenzyme A synthetase gene (facA) and its use as a homologous selection marker. Appl Microbiol Biotechnol. 1993 Jan;38(4):514–519. doi: 10.1007/BF00242947. [DOI] [PubMed] [Google Scholar]
- Gödecke A., Zachariae W., Arvanitidis A., Breunig K. D. Coregulation of the Kluyveromyces lactis lactose permease and beta-galactosidase genes is achieved by interaction of multiple LAC9 binding sites in a 2.6 kbp divergent promoter. Nucleic Acids Res. 1991 Oct 11;19(19):5351–5358. doi: 10.1093/nar/19.19.5351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ha N., Hellauer K., Turcotte B. Mutations in target DNA elements of yeast HAP1 modulate its transcriptional activity without affecting DNA binding. Nucleic Acids Res. 1996 Apr 15;24(8):1453–1459. doi: 10.1093/nar/24.8.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halvorsen Y. C., Nandabalan K., Dickson R. C. LAC9 DNA-binding domain coordinates two zinc atoms per monomer and contacts DNA as a dimer. J Biol Chem. 1990 Aug 5;265(22):13283–13289. [PubMed] [Google Scholar]
- Halvorsen Y. D., Nandabalan K., Dickson R. C. Identification of base and backbone contacts used for DNA sequence recognition and high-affinity binding by LAC9, a transcription activator containing a C6 zinc finger. Mol Cell Biol. 1991 Apr;11(4):1777–1784. doi: 10.1128/mcb.11.4.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
- Hartig A., Simon M. M., Schuster T., Daugherty J. R., Yoo H. S., Cooper T. G. Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae. Nucleic Acids Res. 1992 Nov 11;20(21):5677–5686. doi: 10.1093/nar/20.21.5677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hedges D., Proft M., Entian K. D. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1995 Apr;15(4):1915–1922. doi: 10.1128/mcb.15.4.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hellauer K., Rochon M. H., Turcotte B. A novel DNA binding motif for yeast zinc cluster proteins: the Leu3p and Pdr3p transcriptional activators recognize everted repeats. Mol Cell Biol. 1996 Nov;16(11):6096–6102. doi: 10.1128/mcb.16.11.6096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hynes M. J. A cis-dominant regulatory mutation affecting enzyme induction in the eukaryote Aspergillus nidulans. Nature. 1975 Jan 17;253(5488):210–212. doi: 10.1038/253210a0. [DOI] [PubMed] [Google Scholar]
- Hynes M. J. An "up-promotor" mutation affecting the acetamidase of Aspergillus nidulans. Mol Gen Genet. 1978 Oct 25;166(1):31–36. doi: 10.1007/BF00379726. [DOI] [PubMed] [Google Scholar]
- Hynes M. J., Corrick C. M., Kelly J. M., Littlejohn T. G. Identification of the sites of action for regulatory genes controlling the amdS gene of Aspergillus nidulans. Mol Cell Biol. 1988 Jun;8(6):2589–2596. doi: 10.1128/mcb.8.6.2589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hynes M. J., Corrick C. M., King J. A. Isolation of genomic clones containing the amdS gene of Aspergillus nidulans and their use in the analysis of structural and regulatory mutations. Mol Cell Biol. 1983 Aug;3(8):1430–1439. doi: 10.1128/mcb.3.8.1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hynes M. J. Induction of the acetamidase of Aspergillus nidulans by acetate metabolism. J Bacteriol. 1977 Sep;131(3):770–775. doi: 10.1128/jb.131.3.770-775.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz M. E., Hynes M. J. Isolation and analysis of the acetate regulatory gene, facB, from Aspergillus nidulans. Mol Cell Biol. 1989 Dec;9(12):5696–5701. doi: 10.1128/mcb.9.12.5696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katzmann D. J., Burnett P. E., Golin J., Mahé Y., Moye-Rowley W. S. Transcriptional control of the yeast PDR5 gene by the PDR3 gene product. Mol Cell Biol. 1994 Jul;14(7):4653–4661. doi: 10.1128/mcb.14.7.4653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly J. M., Hynes M. J. Multiple copies of the amdS gene of Aspergillus nidulans cause titration of trans-acting regulatory proteins. Curr Genet. 1987;12(1):21–31. doi: 10.1007/BF00420723. [DOI] [PubMed] [Google Scholar]
- Kelly J. M., Hynes M. J. The regulation of NADP-linked isocitrate dehydrogenase in Aspergillus nidulans. J Gen Microbiol. 1982 Jan;128(1):23–28. doi: 10.1099/00221287-128-1-23. [DOI] [PubMed] [Google Scholar]
- Kornberg H. L. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J. 1966 Apr;99(1):1–11. doi: 10.1042/bj0990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kratzer S., Schüller H. J. Carbon source-dependent regulation of the acetyl-coenzyme A synthetase-encoding gene ACS1 from Saccharomyces cerevisiae. Gene. 1995 Aug 8;161(1):75–79. doi: 10.1016/0378-1119(95)00289-i. [DOI] [PubMed] [Google Scholar]
- Kraulis P. J., Raine A. R., Gadhavi P. L., Laue E. D. Structure of the DNA-binding domain of zinc GAL4. Nature. 1992 Apr 2;356(6368):448–450. doi: 10.1038/356448a0. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee F. J., Lin L. W., Smith J. A. A glucose-repressible gene encodes acetyl-CoA hydrolase from Saccharomyces cerevisiae. J Biol Chem. 1990 May 5;265(13):7413–7418. [PubMed] [Google Scholar]
- Lesage P., Yang X., Carlson M. Yeast SNF1 protein kinase interacts with SIP4, a C6 zinc cluster transcriptional activator: a new role for SNF1 in the glucose response. Mol Cell Biol. 1996 May;16(5):1921–1928. doi: 10.1128/mcb.16.5.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Littlejohn T. G., Hynes M. J. Analysis of the site of action of the amdR product for regulation of the amdS gene of Aspergillus nidulans. Mol Gen Genet. 1992 Oct;235(1):81–88. doi: 10.1007/BF00286184. [DOI] [PubMed] [Google Scholar]
- Marathe S., Connerton I. F., Fincham J. R. Duplication-induced mutation of a new Neurospora gene required for acetate utilization: properties of the mutant and predicted amino acid sequence of the protein product. Mol Cell Biol. 1990 Jun;10(6):2638–2644. doi: 10.1128/mcb.10.6.2638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marmorstein R., Carey M., Ptashne M., Harrison S. C. DNA recognition by GAL4: structure of a protein-DNA complex. Nature. 1992 Apr 2;356(6368):408–414. doi: 10.1038/356408a0. [DOI] [PubMed] [Google Scholar]
- Marmorstein R., Harrison S. C. Crystal structure of a PPR1-DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Dev. 1994 Oct 15;8(20):2504–2512. doi: 10.1101/gad.8.20.2504. [DOI] [PubMed] [Google Scholar]
- Martínez-Blanco H., Orejas M., Reglero A., Luengo J. M., Peñalva M. A. Characterisation of the gene encoding acetyl-CoA synthetase in Penicillium chrysogenum: conservation of intron position in plectomycetes. Gene. 1993 Aug 25;130(2):265–270. doi: 10.1016/0378-1119(93)90429-7. [DOI] [PubMed] [Google Scholar]
- Mercado J. J., Gancedo J. M. Regulatory regions in the yeast FBP1 and PCK1 genes. FEBS Lett. 1992 Oct 19;311(2):110–114. doi: 10.1016/0014-5793(92)81379-z. [DOI] [PubMed] [Google Scholar]
- Niederacher D., Schüller H. J., Grzesitza D., Gütlich H., Hauser H. P., Wagner T., Entian K. D. Identification of UAS elements and binding proteins necessary for derepression of Saccharomyces cerevisiae fructose-1,6-bisphosphatase. Curr Genet. 1992 Nov;22(5):363–370. doi: 10.1007/BF00352437. [DOI] [PubMed] [Google Scholar]
- Pan T., Coleman J. E. GAL4 transcription factor is not a "zinc finger" but forms a Zn(II)2Cys6 binuclear cluster. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2077–2081. doi: 10.1073/pnas.87.6.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan T., Coleman J. E. Sequential assignments of the 1H NMR resonances of Zn(II)2 and 113Cd(II)2 derivatives of the DNA-binding domain of the GAL4 transcription factor reveal a novel structural motif for specific DNA recognition. Biochemistry. 1991 Apr 30;30(17):4212–4222. doi: 10.1021/bi00231a016. [DOI] [PubMed] [Google Scholar]
- Papagiannopoulos P., Andrianopoulos A., Sharp J. A., Davis M. A., Hynes M. J. The hapC gene of Aspergillus nidulans is involved in the expression of CCAAT-containing promoters. Mol Gen Genet. 1996 Jun 24;251(4):412–421. doi: 10.1007/BF02172369. [DOI] [PubMed] [Google Scholar]
- Pfeifer K., Prezant T., Guarente L. Yeast HAP1 activator binds to two upstream activation sites of different sequence. Cell. 1987 Apr 10;49(1):19–27. doi: 10.1016/0092-8674(87)90751-3. [DOI] [PubMed] [Google Scholar]
- Proft M., Grzesitza D., Entian K. D. Identification and characterization of regulatory elements in the phosphoenolpyruvate carboxykinase gene PCK1 of Saccharomyces cerevisiae. Mol Gen Genet. 1995 Feb 6;246(3):367–373. doi: 10.1007/BF00288610. [DOI] [PubMed] [Google Scholar]
- Proft M., Kötter P., Hedges D., Bojunga N., Entian K. D. CAT5, a new gene necessary for derepression of gluconeogenic enzymes in Saccharomyces cerevisiae. EMBO J. 1995 Dec 15;14(24):6116–6126. doi: 10.1002/j.1460-2075.1995.tb00302.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Remboutsika E., Kohlhaw G. B. Molecular architecture of a Leu3p-DNA complex in solution: a biochemical approach. Mol Cell Biol. 1994 Aug;14(8):5547–5557. doi: 10.1128/mcb.14.8.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers D. T., Hiller E., Mitsock L., Orr E. Characterization of the gene for fructose-1,6-bisphosphatase from Saccharomyces cerevisiae and Schizosaccharomyces pombe. Sequence, protein homology, and expression during growth on glucose. J Biol Chem. 1988 May 5;263(13):6051–6057. [PubMed] [Google Scholar]
- Roy A., Exinger F., Losson R. cis- and trans-acting regulatory elements of the yeast URA3 promoter. Mol Cell Biol. 1990 Oct;10(10):5257–5270. doi: 10.1128/mcb.10.10.5257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandeman R. A., Hynes M. J., Fincham J. R., Connerton I. F. Molecular organisation of the malate synthase genes of Aspergillus nidulans and Neurospora crassa. Mol Gen Genet. 1991 Sep;228(3):445–452. doi: 10.1007/BF00260638. [DOI] [PubMed] [Google Scholar]
- Schöler A., Schüller H. J. A carbon source-responsive promoter element necessary for activation of the isocitrate lyase gene ICL1 is common to genes of the gluconeogenic pathway in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1994 Jun;14(6):3613–3622. doi: 10.1128/mcb.14.6.3613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schöler A., Schüller H. J. Structure and regulation of the isocitrate lyase gene ICL1 from the yeast Saccharomyces cerevisiae. Curr Genet. 1993 May-Jun;23(5-6):375–381. doi: 10.1007/BF00312621. [DOI] [PubMed] [Google Scholar]
- Siddiqui A. H., Brandriss M. C. The Saccharomyces cerevisiae PUT3 activator protein associates with proline-specific upstream activation sequences. Mol Cell Biol. 1989 Nov;9(11):4706–4712. doi: 10.1128/mcb.9.11.4706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sirenko O. I., Ni B., Needleman R. B. Purification and binding properties of the Mal63p activator of Saccharomyces cerevisiae. Curr Genet. 1995 May;27(6):509–516. doi: 10.1007/BF00314440. [DOI] [PubMed] [Google Scholar]
- Suárez T., de Queiroz M. V., Oestreicher N., Scazzocchio C. The sequence and binding specificity of UaY, the specific regulator of the purine utilization pathway in Aspergillus nidulans, suggest an evolutionary relationship with the PPR1 protein of Saccharomyces cerevisiae. EMBO J. 1995 Apr 3;14(7):1453–1467. doi: 10.1002/j.1460-2075.1995.tb07132.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takanami M. RNA polymerase nascent product analysis. Methods Enzymol. 1980;65(1):497–499. doi: 10.1016/s0076-6879(80)65058-7. [DOI] [PubMed] [Google Scholar]
- Todd R. B., Andrianopoulos A. Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol. 1997 Jun;21(3):388–405. doi: 10.1006/fgbi.1997.0993. [DOI] [PubMed] [Google Scholar]
- Todd R. B., Kelly J. M., Davis M. A., Hynes M. J. Molecular characterization of mutants of the acetate regulatory gene facB of Aspergillus nidulans. Fungal Genet Biol. 1997 Oct;22(2):92–102. doi: 10.1006/fgbi.1997.1007. [DOI] [PubMed] [Google Scholar]
- Todd R. B., Murphy R. L., Martin H. M., Sharp J. A., Davis M. A., Katz M. E., Hynes M. J. The acetate regulatory gene facB of Aspergillus nidulans encodes a Zn(II)2Cys6 transcriptional activator. Mol Gen Genet. 1997 May 20;254(5):495–504. doi: 10.1007/s004380050444. [DOI] [PubMed] [Google Scholar]
- Vashee S., Xu H., Johnston S. A., Kodadek T. How do "Zn2 cys6" proteins distinguish between similar upstream activation sites? Comparison of the DNA-binding specificity of the GAL4 protein in vitro and in vivo. J Biol Chem. 1993 Nov 25;268(33):24699–24706. [PubMed] [Google Scholar]
- Vincent O., Gancedo J. M. Analysis of positive elements sensitive to glucose in the promoter of the FBP1 gene from yeast. J Biol Chem. 1995 May 26;270(21):12832–12838. doi: 10.1074/jbc.270.21.12832. [DOI] [PubMed] [Google Scholar]
- Zhang L., Bermingham-McDonogh O., Turcotte B., Guarente L. Antibody-promoted dimerization bypasses the regulation of DNA binding by the heme domain of the yeast transcriptional activator HAP1. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2851–2855. doi: 10.1073/pnas.90.7.2851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang L., Guarente L. The yeast activator HAP1--a GAL4 family member--binds DNA in a directly repeated orientation. Genes Dev. 1994 Sep 1;8(17):2110–2119. doi: 10.1101/gad.8.17.2110. [DOI] [PubMed] [Google Scholar]
