Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Apr 15;17(8):2298–2307. doi: 10.1093/emboj/17.8.2298

Xvent-1 mediates BMP-4-induced suppression of the dorsal-lip-specific early response gene XFD-1' in Xenopus embryos.

H Friedle 1, S Rastegar 1, H Paul 1, E Kaufmann 1, W Knöchel 1
PMCID: PMC1170573  PMID: 9545242

Abstract

Ectopic expression of the ventralizing morphogen BMP-4 (bone morphogenetic protein-4) in the dorsal lip (Spemann organizer) of Xenopus embryos blocks transcription of dorsal-lip-specific early response genes. We investigated the molecular mechanism underlying the BMP-4-induced inhibition of the fork head gene XFD-1'. The promoter of this gene contains a BMP-triggered inhibitory element (BIE) which prevents activation of this gene at the ventral/vegetal side of the embryo in vivo. In the present study, we show that BMP-4-induced inhibition is not direct but indirect, and is mediated by Xvent homeobox proteins. Micro-injections of Xvent-1 RNA and XFD-1' promoter deletion mutants demonstrate that Xvent-1 mimics the effect of BMP-4 signalling not only by suppression of the XFD-1' gene, but also by utilizing the BIE. Suppression could be reverted using a dominant-negative Xvent-1 mutant. The repressor domain was localized to the N-terminal region of the protein. Gel-shift and footprint analyses prove that Xvent-1 binds to the BIE. Moreover, PCR-based target-site selection for the Xvent-1 homeodomain confirms distinct motifs within the BIE as preferential binding sites. Thus, biological and molecular data suggest that Xvent-1 acts as direct repressor for XFD-1' transcription and mediates BMP-4-induced inhibition.

Full Text

The Full Text of this article is available as a PDF (489.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arora K., Dai H., Kazuko S. G., Jamal J., O'Connor M. B., Letsou A., Warrior R. The Drosophila schnurri gene acts in the Dpp/TGF beta signaling pathway and encodes a transcription factor homologous to the human MBP family. Cell. 1995 Jun 2;81(5):781–790. doi: 10.1016/0092-8674(95)90539-1. [DOI] [PubMed] [Google Scholar]
  2. Ault K. T., Dirksen M. L., Jamrich M. A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6415–6420. doi: 10.1073/pnas.93.13.6415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Candia A. F., Watabe T., Hawley S. H., Onichtchouk D., Zhang Y., Derynck R., Niehrs C., Cho K. W. Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development. 1997 Nov;124(22):4467–4480. doi: 10.1242/dev.124.22.4467. [DOI] [PubMed] [Google Scholar]
  4. Chen X., Rubock M. J., Whitman M. A transcriptional partner for MAD proteins in TGF-beta signalling. Nature. 1996 Oct 24;383(6602):691–696. doi: 10.1038/383691a0. [DOI] [PubMed] [Google Scholar]
  5. Cho K. W., Blumberg B., Steinbeisser H., De Robertis E. M. Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell. 1991 Dec 20;67(6):1111–1120. doi: 10.1016/0092-8674(91)90288-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clement J. H., Fettes P., Knöchel S., Lef J., Knöchel W. Bone morphogenetic protein 2 in the early development of Xenopus laevis. Mech Dev. 1995 Aug;52(2-3):357–370. doi: 10.1016/0925-4773(95)00413-u. [DOI] [PubMed] [Google Scholar]
  7. Dale L., Howes G., Price B. M., Smith J. C. Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development. 1992 Jun;115(2):573–585. doi: 10.1242/dev.115.2.573. [DOI] [PubMed] [Google Scholar]
  8. Dawid I. B. Intercellular signaling and gene regulation during early embryogenesis of Xenopus laevis. J Biol Chem. 1994 Mar 4;269(9):6259–6262. [PubMed] [Google Scholar]
  9. Dirksen M. L., Jamrich M. A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. Genes Dev. 1992 Apr;6(4):599–608. doi: 10.1101/gad.6.4.599. [DOI] [PubMed] [Google Scholar]
  10. Fainsod A., Deissler K., Yelin R., Marom K., Epstein M., Pillemer G., Steinbeisser H., Blum M. The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech Dev. 1997 Apr;63(1):39–50. doi: 10.1016/s0925-4773(97)00673-4. [DOI] [PubMed] [Google Scholar]
  11. Fainsod A., Steinbeisser H., De Robertis E. M. On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J. 1994 Nov 1;13(21):5015–5025. doi: 10.1002/j.1460-2075.1994.tb06830.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gawantka V., Delius H., Hirschfeld K., Blumenstock C., Niehrs C. Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J. 1995 Dec 15;14(24):6268–6279. doi: 10.1002/j.1460-2075.1995.tb00317.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gehring W. J., Affolter M., Bürglin T. Homeodomain proteins. Annu Rev Biochem. 1994;63:487–526. doi: 10.1146/annurev.bi.63.070194.002415. [DOI] [PubMed] [Google Scholar]
  14. Graff J. M., Bansal A., Melton D. A. Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta superfamily. Cell. 1996 May 17;85(4):479–487. doi: 10.1016/s0092-8674(00)81249-0. [DOI] [PubMed] [Google Scholar]
  15. Graff J. M. Embryonic patterning: to BMP or not to BMP, that is the question. Cell. 1997 Apr 18;89(2):171–174. doi: 10.1016/s0092-8674(00)80196-8. [DOI] [PubMed] [Google Scholar]
  16. Graff J. M., Thies R. S., Song J. J., Celeste A. J., Melton D. A. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell. 1994 Oct 7;79(1):169–179. doi: 10.1016/0092-8674(94)90409-x. [DOI] [PubMed] [Google Scholar]
  17. Grieder N. C., Nellen D., Burke R., Basler K., Affolter M. Schnurri is required for Drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1. Cell. 1995 Jun 2;81(5):791–800. doi: 10.1016/0092-8674(95)90540-5. [DOI] [PubMed] [Google Scholar]
  18. Harland R. M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 1991;36:685–695. doi: 10.1016/s0091-679x(08)60307-6. [DOI] [PubMed] [Google Scholar]
  19. Hemmati-Brivanlou A., Thomsen G. H. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev Genet. 1995;17(1):78–89. doi: 10.1002/dvg.1020170109. [DOI] [PubMed] [Google Scholar]
  20. Howell M., Hill C. S. XSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos. EMBO J. 1997 Dec 15;16(24):7411–7421. doi: 10.1093/emboj/16.24.7411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Huang H. C., Murtaugh L. C., Vize P. D., Whitman M. Identification of a potential regulator of early transcriptional responses to mesoderm inducers in the frog embryo. EMBO J. 1995 Dec 1;14(23):5965–5973. doi: 10.1002/j.1460-2075.1995.tb00285.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones C. M., Dale L., Hogan B. L., Wright C. V., Smith J. C. Bone morphogenetic protein-4 (BMP-4) acts during gastrula stages to cause ventralization of Xenopus embryos. Development. 1996 May;122(5):1545–1554. doi: 10.1242/dev.122.5.1545. [DOI] [PubMed] [Google Scholar]
  23. Jones C. M., Lyons K. M., Lapan P. M., Wright C. V., Hogan B. L. DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development. 1992 Jun;115(2):639–647. doi: 10.1242/dev.115.2.639. [DOI] [PubMed] [Google Scholar]
  24. Joore J., Fasciana C., Speksnijder J. E., Kruijer W., Destrée O. H., van den Eijnden-van Raaij A. J., de Laat S. W., Zivkovic D. Regulation of the zebrafish goosecoid promoter by mesoderm inducing factors and Xwnt1. Mech Dev. 1996 Mar;55(1):3–18. doi: 10.1016/0925-4773(95)00481-5. [DOI] [PubMed] [Google Scholar]
  25. Kaufmann E., Müller D., Knöchel W. DNA recognition site analysis of Xenopus winged helix proteins. J Mol Biol. 1995 Apr 28;248(2):239–254. doi: 10.1016/s0022-2836(95)80047-6. [DOI] [PubMed] [Google Scholar]
  26. Kaufmann E., Paul H., Friedle H., Metz A., Scheucher M., Clement J. H., Knöchel W. Antagonistic actions of activin A and BMP-2/4 control dorsal lip-specific activation of the early response gene XFD-1' in Xenopus laevis embryos. EMBO J. 1996 Dec 2;15(23):6739–6749. [PMC free article] [PubMed] [Google Scholar]
  27. Kessler D. S., Melton D. A. Vertebrate embryonic induction: mesodermal and neural patterning. Science. 1994 Oct 28;266(5185):596–604. doi: 10.1126/science.7939714. [DOI] [PubMed] [Google Scholar]
  28. Kim J., Johnson K., Chen H. J., Carroll S., Laughon A. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature. 1997 Jul 17;388(6639):304–308. doi: 10.1038/40906. [DOI] [PubMed] [Google Scholar]
  29. Knöchel S., Lef J., Clement J., Klocke B., Hille S., Köster M., Knöchel W. Activin A induced expression of a fork head related gene in posterior chordamesoderm (notochord) of Xenopus laevis embryos. Mech Dev. 1992 Aug;38(2):157–165. doi: 10.1016/0925-4773(92)90007-7. [DOI] [PubMed] [Google Scholar]
  30. Köster M., Plessow S., Clement J. H., Lorenz A., Tiedemann H., Knöchel W. Bone morphogenetic protein 4 (BMP-4), a member of the TGF-beta family, in early embryos of Xenopus laevis: analysis of mesoderm inducing activity. Mech Dev. 1991 Mar;33(3):191–199. doi: 10.1016/0925-4773(91)90027-4. [DOI] [PubMed] [Google Scholar]
  31. Ladher R., Mohun T. J., Smith J. C., Snape A. M. Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4. Development. 1996 Aug;122(8):2385–2394. doi: 10.1242/dev.122.8.2385. [DOI] [PubMed] [Google Scholar]
  32. Lemaire P. The coming of age of ventralising homeobox genes in amphibian development. Bioessays. 1996 Sep;18(9):701–704. doi: 10.1002/bies.950180904. [DOI] [PubMed] [Google Scholar]
  33. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  34. Mead P. E., Brivanlou I. H., Kelley C. M., Zon L. I. BMP-4-responsive regulation of dorsal-ventral patterning by the homeobox protein Mix.1. Nature. 1996 Jul 25;382(6589):357–360. doi: 10.1038/382357a0. [DOI] [PubMed] [Google Scholar]
  35. Meersseman G., Verschueren K., Nelles L., Blumenstock C., Kraft H., Wuytens G., Remacle J., Kozak C. A., Tylzanowski P., Niehrs C. The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in the Xenopus embryo and transcriptional activation. Mech Dev. 1997 Jan;61(1-2):127–140. doi: 10.1016/s0925-4773(96)00629-6. [DOI] [PubMed] [Google Scholar]
  36. Onichtchouk D., Gawantka V., Dosch R., Delius H., Hirschfeld K., Blumenstock C., Niehrs C. The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling [correction of controling] dorsoventral patterning of Xenopus mesoderm. Development. 1996 Oct;122(10):3045–3053. doi: 10.1242/dev.122.10.3045. [DOI] [PubMed] [Google Scholar]
  37. Onichtchouk D., Glinka A., Niehrs C. Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning of Xenopus mesoderm. Development. 1998 Apr;125(8):1447–1456. doi: 10.1242/dev.125.8.1447. [DOI] [PubMed] [Google Scholar]
  38. Papalopulu N., Kintner C. A Xenopus gene, Xbr-1, defines a novel class of homeobox genes and is expressed in the dorsal ciliary margin of the eye. Dev Biol. 1996 Feb 25;174(1):104–114. doi: 10.1006/dbio.1996.0055. [DOI] [PubMed] [Google Scholar]
  39. Piccolo S., Sasai Y., Lu B., De Robertis E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell. 1996 Aug 23;86(4):589–598. doi: 10.1016/s0092-8674(00)80132-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Re'em-Kalma Y., Lamb T., Frank D. Competition between noggin and bone morphogenetic protein 4 activities may regulate dorsalization during Xenopus development. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12141–12145. doi: 10.1073/pnas.92.26.12141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rebbert M. L., Dawid I. B. Transcriptional regulation of the Xlim-1 gene by activin is mediated by an element in intron I. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9717–9722. doi: 10.1073/pnas.94.18.9717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ruiz i Altaba A., Jessell T. M. Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis. Development. 1992 Sep;116(1):81–93. doi: 10.1242/dev.116.Supplement.81. [DOI] [PubMed] [Google Scholar]
  43. Rupp R. A., Snider L., Weintraub H. Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 1994 Jun 1;8(11):1311–1323. doi: 10.1101/gad.8.11.1311. [DOI] [PubMed] [Google Scholar]
  44. Schmidt J. E., Suzuki A., Ueno N., Kimelman D. Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo. Dev Biol. 1995 May;169(1):37–50. doi: 10.1006/dbio.1995.1124. [DOI] [PubMed] [Google Scholar]
  45. Schmidt J. E., von Dassow G., Kimelman D. Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox. Development. 1996 Jun;122(6):1711–1721. doi: 10.1242/dev.122.6.1711. [DOI] [PubMed] [Google Scholar]
  46. Singh H., Sen R., Baltimore D., Sharp P. A. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature. 1986 Jan 9;319(6049):154–158. doi: 10.1038/319154a0. [DOI] [PubMed] [Google Scholar]
  47. Slack J. M. Inducing factors in Xenopus early embryos. Curr Biol. 1994 Feb 1;4(2):116–126. doi: 10.1016/s0960-9822(94)00027-8. [DOI] [PubMed] [Google Scholar]
  48. Suzuki A., Thies R. S., Yamaji N., Song J. J., Wozney J. M., Murakami K., Ueno N. A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10255–10259. doi: 10.1073/pnas.91.22.10255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tadano T., Otani H., Taira M., Dawid I. B. Differential induction of regulatory genes during mesoderm formation in Xenopus laevis embryos. Dev Genet. 1993;14(3):204–211. doi: 10.1002/dvg.1020140307. [DOI] [PubMed] [Google Scholar]
  50. Thomsen G. H. Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development. 1996 Aug;122(8):2359–2366. doi: 10.1242/dev.122.8.2359. [DOI] [PubMed] [Google Scholar]
  51. Vershon A. K. Protein interactions of homeodomain proteins. Curr Opin Biotechnol. 1996 Aug;7(4):392–396. doi: 10.1016/s0958-1669(96)80113-3. [DOI] [PubMed] [Google Scholar]
  52. Watabe T., Kim S., Candia A., Rothbächer U., Hashimoto C., Inoue K., Cho K. W. Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev. 1995 Dec 15;9(24):3038–3050. doi: 10.1101/gad.9.24.3038. [DOI] [PubMed] [Google Scholar]
  53. Whitman M. Signal transduction. Feedback from inhibitory SMADs. Nature. 1997 Oct 9;389(6651):549–551. doi: 10.1038/39202. [DOI] [PubMed] [Google Scholar]
  54. Witta S. E., Sato S. M. XIPOU 2 is a potential regulator of Spemann's Organizer. Development. 1997 Mar;124(6):1179–1189. doi: 10.1242/dev.124.6.1179. [DOI] [PubMed] [Google Scholar]
  55. Wrana J., Pawson T. Signal transduction. Mad about SMADs. Nature. 1997 Jul 3;388(6637):28–29. doi: 10.1038/40290. [DOI] [PubMed] [Google Scholar]
  56. Zimmerman L. B., De Jesús-Escobar J. M., Harland R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell. 1996 Aug 23;86(4):599–606. doi: 10.1016/s0092-8674(00)80133-6. [DOI] [PubMed] [Google Scholar]
  57. von Dassow G., Schmidt J. E., Kimelman D. Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene. Genes Dev. 1993 Mar;7(3):355–366. doi: 10.1101/gad.7.3.355. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES