Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Apr 15;17(8):2353–2358. doi: 10.1093/emboj/17.8.2353

Structure of wild-type yeast RNA polymerase II and location of Rpb4 and Rpb7.

G J Jensen 1, G Meredith 1, D A Bushnell 1, R D Kornberg 1
PMCID: PMC1170578  PMID: 9545247

Abstract

The three-dimensional structure of wild-type yeast RNA polymerase II has been determined at a nominal resolution of 24 A. A difference map between this structure and that of the polymerase lacking subunits Rpb4 and Rpb7 showed these two subunits forming part of the floor of the DNA-binding (active center) cleft, and revealed a slight inward movement of the protein domain surrounding the cleft. Surface plasmon resonance measurements showed that Rpb4 and Rpb7 stabilize a minimal pre-initiation complex containing promoter DNA, TATA box-binding protein (TBP), transcription factor TFIIB and the polymerase. These findings suggest that Rpb4 and Rpb7 play a role in coupling the entry of DNA into the active center cleft to closure of the cleft. Such a role can explain why these subunits are necessary for promoter-specific transcription in vitro and for a normal stress response in vivo.

Full Text

The Full Text of this article is available as a PDF (267.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos L. A., Henderson R., Unwin P. N. Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog Biophys Mol Biol. 1982;39(3):183–231. doi: 10.1016/0079-6107(83)90017-2. [DOI] [PubMed] [Google Scholar]
  2. Asturias F. J., Kornberg R. D. A novel method for transfer of two-dimensional crystals from the air/water interface to specimen grids. EM sample preparation/lipid-layer crystallization. J Struct Biol. 1995 Jan-Feb;114(1):60–66. doi: 10.1006/jsbi.1995.1005. [DOI] [PubMed] [Google Scholar]
  3. Asturias F. J., Meredith G. D., Poglitsch C. L., Kornberg R. D. Two conformations of RNA polymerase II revealed by electron crystallography. J Mol Biol. 1997 Oct 3;272(4):536–540. doi: 10.1006/jmbi.1997.1273. [DOI] [PubMed] [Google Scholar]
  4. Choder M., Young R. A. A portion of RNA polymerase II molecules has a component essential for stress responses and stress survival. Mol Cell Biol. 1993 Nov;13(11):6984–6991. doi: 10.1128/mcb.13.11.6984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Darst S. A., Edwards A. M., Kubalek E. W., Kornberg R. D. Three-dimensional structure of yeast RNA polymerase II at 16 A resolution. Cell. 1991 Jul 12;66(1):121–128. doi: 10.1016/0092-8674(91)90144-n. [DOI] [PubMed] [Google Scholar]
  6. Darst S. A., Kubalek E. W., Edwards A. M., Kornberg R. D. Two-dimensional and epitaxial crystallization of a mutant form of yeast RNA polymerase II. J Mol Biol. 1991 Sep 5;221(1):347–357. doi: 10.1016/0022-2836(91)80223-h. [DOI] [PubMed] [Google Scholar]
  7. Darst S. A., Kubalek E. W., Kornberg R. D. Three-dimensional structure of Escherichia coli RNA polymerase holoenzyme determined by electron crystallography. Nature. 1989 Aug 31;340(6236):730–732. doi: 10.1038/340730a0. [DOI] [PubMed] [Google Scholar]
  8. Dezélée S., Wyers F., Sentenac A., Fromageot P. Two forms of RNA polymerase B in yeast. Proteolytic conversion in vitro of enzyme BI into BII. Eur J Biochem. 1976 Jun 1;65(2):543–552. doi: 10.1111/j.1432-1033.1976.tb10372.x. [DOI] [PubMed] [Google Scholar]
  9. Edwards A. M., Darst S. A., Feaver W. J., Thompson N. E., Burgess R. R., Kornberg R. D. Purification and lipid-layer crystallization of yeast RNA polymerase II. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2122–2126. doi: 10.1073/pnas.87.6.2122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edwards A. M., Kane C. M., Young R. A., Kornberg R. D. Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. J Biol Chem. 1991 Jan 5;266(1):71–75. [PubMed] [Google Scholar]
  11. Hessler D., Young S. J., Carragher B. O., Martone M. E., Lamont S., Whittaker M., Milligan R. A., Masliah E., Hinshaw J. E., Ellisman M. H. Programs for visualization in three-dimensional microscopy. Neuroimage. 1992 Aug;1(1):55–67. doi: 10.1016/1053-8119(92)90007-a. [DOI] [PubMed] [Google Scholar]
  12. Khazak V., Estojak J., Cho H., Majors J., Sonoda G., Testa J. R., Golemis E. A. Analysis of the interaction of the novel RNA polymerase II (pol II) subunit hsRPB4 with its partner hsRPB7 and with pol II. Mol Cell Biol. 1998 Apr;18(4):1935–1945. doi: 10.1128/mcb.18.4.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leuther K. K., Bushnell D. A., Kornberg R. D. Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: implications for start site selection and initiation complex formation. Cell. 1996 May 31;85(5):773–779. doi: 10.1016/s0092-8674(00)81242-8. [DOI] [PubMed] [Google Scholar]
  14. McKune K., Richards K. L., Edwards A. M., Young R. A., Woychik N. A. RPB7, one of two dissociable subunits of yeast RNA polymerase II, is essential for cell viability. Yeast. 1993 Mar;9(3):295–299. doi: 10.1002/yea.320090309. [DOI] [PubMed] [Google Scholar]
  15. Meredith G. D., Chang W. H., Li Y., Bushnell D. A., Darst S. A., Kornberg R. D. The C-terminal domain revealed in the structure of RNA polymerase II. J Mol Biol. 1996 May 10;258(3):413–419. doi: 10.1006/jmbi.1996.0258. [DOI] [PubMed] [Google Scholar]
  16. Myers L. C., Leuther K., Bushnell D. A., Gustafsson C. M., Kornberg R. D. Yeast RNA polymerase II transcription reconstituted with purified proteins. Methods. 1997 Jul;12(3):212–216. doi: 10.1006/meth.1997.0473. [DOI] [PubMed] [Google Scholar]
  17. Parvin J. D., Sharp P. A. DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell. 1993 May 7;73(3):533–540. doi: 10.1016/0092-8674(93)90140-l. [DOI] [PubMed] [Google Scholar]
  18. Polyakov A., Severinova E., Darst S. A. Three-dimensional structure of E. coli core RNA polymerase: promoter binding and elongation conformations of the enzyme. Cell. 1995 Nov 3;83(3):365–373. doi: 10.1016/0092-8674(95)90114-0. [DOI] [PubMed] [Google Scholar]
  19. Rasmussen E. B., Lis J. T. Short transcripts of the ternary complex provide insight into RNA polymerase II elongational pausing. J Mol Biol. 1995 Oct 6;252(5):522–535. doi: 10.1006/jmbi.1995.0517. [DOI] [PubMed] [Google Scholar]
  20. Ruet A., Sentenac A., Fromageot P., Winsor B., Lacroute F. A mutation of the B220 subunit gene affects the structural and functional properties of yeast RNA polymerase B in vitro. J Biol Chem. 1980 Jul 10;255(13):6450–6455. [PubMed] [Google Scholar]
  21. Schultz P., Célia H., Riva M., Darst S. A., Colin P., Kornberg R. D., Sentenac A., Oudet P. Structural study of the yeast RNA polymerase A. Electron microscopy of lipid-bound molecules and two-dimensional crystals. J Mol Biol. 1990 Nov 20;216(2):353–362. doi: 10.1016/S0022-2836(05)80326-2. [DOI] [PubMed] [Google Scholar]
  22. Sousa R., Chung Y. J., Rose J. P., Wang B. C. Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution. Nature. 1993 Aug 12;364(6438):593–599. doi: 10.1038/364593a0. [DOI] [PubMed] [Google Scholar]
  23. Woychik N. A., Young R. A. RNA polymerase II subunit RPB4 is essential for high- and low-temperature yeast cell growth. Mol Cell Biol. 1989 Jul;9(7):2854–2859. doi: 10.1128/mcb.9.7.2854. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES