Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Apr 15;17(8):2368–2377. doi: 10.1093/emboj/17.8.2368

Mechanism of translational coupling in the nifLA operon of Klebsiella pneumoniae.

F Govantes 1, E Andújar 1, E Santero 1
PMCID: PMC1170580  PMID: 9545248

Abstract

The nifLA operon of Klebsiella pneumoniae encodes the sensor-activator pair involved in the regulation of other nif genes. Balanced synthesis of both proteins, which is required for correct regulation, is achieved by coupling translation of nifA to that of nifL. The mechanism of translational coupling at the nifLA operon was analysed using a specialized ribosome system, and the effect of substituting the natural Shine-Dalgarno of nifL or nifA for specialized Shine-Dalgarno sequences was determined. Our results indicate that translational coupling occurs in this operon by a reinitiation mechanism. Additionally, reinitiation at the nifA can happen even in the absence of good Shine-Dalgarno recognition by the reinitiating ribosome, although its efficiency is lower. The effect of a putative translational enhancer sequence (downstream box) on translational coupling efficiency was also determined. Mutations that reduce the homology of the putative downstream box to the consensus had only a minor effect on nifA translation by wild-type ribosomes. However, they had a significant effect on nifA translation by specialized ribosomes, suggesting that recognition of the downstream box may compensate inefficient ribosomal interactions with the Shine-Dalgarno sequence.

Full Text

The Full Text of this article is available as a PDF (402.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adhin M. R., van Duin J. Scanning model for translational reinitiation in eubacteria. J Mol Biol. 1990 Jun 20;213(4):811–818. doi: 10.1016/S0022-2836(05)80265-7. [DOI] [PubMed] [Google Scholar]
  2. Adhin M. R., van Duin J. Translational regulation of the lysis gene in RNA bacteriophage fr requires a UUG initiation codon. Mol Gen Genet. 1989 Jul;218(1):137–142. doi: 10.1007/BF00330576. [DOI] [PubMed] [Google Scholar]
  3. Brink M. F., Nels R. N., Verbeet M. P., de Boer H. A. Specialized ribosomes allow for the study of mutations in functionally important regions in 16 S rRNA, without affecting cell growth. The identification of functional regions in the central domain of 16S rRNA. J Mol Biol. 1994 Apr 8;237(4):368–377. doi: 10.1006/jmbi.1994.1240. [DOI] [PubMed] [Google Scholar]
  4. Brink M. F., Verbeet M. P., de Boer H. A. Formation of the central pseudoknot in 16S rRNA is essential for initiation of translation. EMBO J. 1993 Oct;12(10):3987–3996. doi: 10.1002/j.1460-2075.1993.tb06076.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buck M. Deletion analysis of the Klebsiella pneumoniae nitrogenase promoter: importance of spacing between conserved sequences around positions -12 and -24 for activation by the nifA and ntrC (glnG) products. J Bacteriol. 1986 May;166(2):545–551. doi: 10.1128/jb.166.2.545-551.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dallmann H. G., Dunn S. D. Translation through an uncDC mRNA secondary structure governs the level of uncC expression in Escherichia coli. J Bacteriol. 1994 Mar;176(5):1242–1250. doi: 10.1128/jb.176.5.1242-1250.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gerstel B., McCarthy J. E. Independent and coupled translational initiation of atp genes in Escherichia coli: experiments using chromosomal and plasmid-borne lacZ fusions. Mol Microbiol. 1989 Jul;3(7):851–859. doi: 10.1111/j.1365-2958.1989.tb00234.x. [DOI] [PubMed] [Google Scholar]
  8. Govantes F., Molina-López J. A., Santero E. Mechanism of coordinated synthesis of the antagonistic regulatory proteins NifL and NifA of Klebsiella pneumoniae. J Bacteriol. 1996 Dec;178(23):6817–6823. doi: 10.1128/jb.178.23.6817-6823.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Govantes F., Santero E. Transcription termination within the regulatory nifLA operon of Klebsiella pneumoniae. Mol Gen Genet. 1996 Mar 7;250(4):447–454. [PubMed] [Google Scholar]
  10. Grodzicker T., Zipser D. A mutation which creates a new site for the re-initiation of polypeptide synthesis in the z gene of the lac operon of Escherichia coli. J Mol Biol. 1968 Dec;38(3):305–314. doi: 10.1016/0022-2836(68)90388-4. [DOI] [PubMed] [Google Scholar]
  11. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  12. Hill S., Kennedy C., Kavanagh E., Goldberg R. B., Hanau R. Nitrogen fixation gene (nifL) involved in oxygen regulation of nitrogenase synthesis in K. pneumoniae. Nature. 1981 Apr 2;290(5805):424–426. doi: 10.1038/290424a0. [DOI] [PubMed] [Google Scholar]
  13. Hui A., Jhurani P., de Boer H. A. Directing ribosomes to a single mRNA species: a method to study ribosomal RNA mutations and their effects on translation of a single messenger in Escherichia coli. Methods Enzymol. 1987;153:432–452. doi: 10.1016/0076-6879(87)53070-1. [DOI] [PubMed] [Google Scholar]
  14. Hui A., de Boer H. A. Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4762–4766. doi: 10.1073/pnas.84.14.4762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ivey-Hoyle M., Steege D. A. Mutational analysis of an inherently defective translation initiation site. J Mol Biol. 1992 Apr 20;224(4):1039–1054. doi: 10.1016/0022-2836(92)90468-y. [DOI] [PubMed] [Google Scholar]
  16. Kleiner D., Paul W., Merrick M. J. Construction of multicopy expression vectors for regulated over-production of proteins in Klebsiella pneumoniae and other enteric bacteria. J Gen Microbiol. 1988 Jul;134(7):1779–1784. doi: 10.1099/00221287-134-7-1779. [DOI] [PubMed] [Google Scholar]
  17. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lesage P., Chiaruttini C., Graffe M., Dondon J., Milet M., Springer M. Messenger RNA secondary structure and translational coupling in the Escherichia coli operon encoding translation initiation factor IF3 and the ribosomal proteins, L35 and L20. J Mol Biol. 1992 Nov 20;228(2):366–386. doi: 10.1016/0022-2836(92)90827-7. [DOI] [PubMed] [Google Scholar]
  20. MacNeil T., MacNeil D., Roberts G. P., Supiano M. A., Brill W. J. Fine-structure mapping and complementation analysis of nif (nitrogen fixation) genes in Klebsiella pneumoniae. J Bacteriol. 1978 Oct;136(1):253–266. doi: 10.1128/jb.136.1.253-266.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McCarthy J. E., Brimacombe R. Prokaryotic translation: the interactive pathway leading to initiation. Trends Genet. 1994 Nov;10(11):402–407. doi: 10.1016/0168-9525(94)90057-4. [DOI] [PubMed] [Google Scholar]
  22. McCarthy J. E., Gualerzi C. Translational control of prokaryotic gene expression. Trends Genet. 1990 Mar;6(3):78–85. doi: 10.1016/0168-9525(90)90098-q. [DOI] [PubMed] [Google Scholar]
  23. Resch A., Tedin K., Gründling A., Mündlein A., Bläsi U. Downstream box-anti-downstream box interactions are dispensable for translation initiation of leaderless mRNAs. EMBO J. 1996 Sep 2;15(17):4740–4748. [PMC free article] [PubMed] [Google Scholar]
  24. Rex G., Surin B., Besse G., Schneppe B., McCarthy J. E. The mechanism of translational coupling in Escherichia coli. Higher order structure in the atpHA mRNA acts as a conformational switch regulating the access of de novo initiating ribosomes. J Biol Chem. 1994 Jul 8;269(27):18118–18127. [PubMed] [Google Scholar]
  25. Sarabhai A., Brenner S. A mutant which reinitiates the polypeptide chain after chain termination. J Mol Biol. 1967 Jul 14;27(1):145–162. doi: 10.1016/0022-2836(67)90357-9. [DOI] [PubMed] [Google Scholar]
  26. Schmitz R. A., He L., Kustu S. Iron is required to relieve inhibitory effects on NifL on transcriptional activation by NifA in Klebsiella pneumoniae. J Bacteriol. 1996 Aug;178(15):4679–4687. doi: 10.1128/jb.178.15.4679-4687.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sprengart M. L., Fatscher H. P., Fuchs E. The initiation of translation in E. coli: apparent base pairing between the 16srRNA and downstream sequences of the mRNA. Nucleic Acids Res. 1990 Apr 11;18(7):1719–1723. doi: 10.1093/nar/18.7.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sprengart M. L., Fuchs E., Porter A. G. The downstream box: an efficient and independent translation initiation signal in Escherichia coli. EMBO J. 1996 Feb 1;15(3):665–674. [PMC free article] [PubMed] [Google Scholar]
  29. Yates J. L., Dean D., Strycharz W. A., Nomura M. E. coli ribosomal protein L10 inhibits translation of L10 and L7/L12 mRNAs by acting at a single site. Nature. 1981 Nov 12;294(5837):190–192. doi: 10.1038/294190a0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES