Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 May 15;17(10):2748–2758. doi: 10.1093/emboj/17.10.2748

Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain.

M G Mateu 1, A R Fersht 1
PMCID: PMC1170615  PMID: 9582268

Abstract

The contribution of almost each amino acid side chain to the thermodynamic stability of the tetramerization domain (residues 326-353) of human p53 has been quantitated using 25 mutants with single-residue truncations to alanine (or glycine). Truncation of either Leu344 or Leu348 buried at the tetramer interface, but not of any other residue, led to the formation of dimers of moderate stability (8-9 kcal/mol of dimer) instead of tetramers. One-third of the substitutions were moderately destabilizing (<3.9 kcal/mol of tetramer). Truncations of Arg333, Asn345 or Glu349 involved in intermonomer hydrogen bonds, Ala347 at the tetramer interface or Thr329 were more destabilizing (4.1-5.7 kcal/mol). Strongly destabilizing (8.8- 11.7 kcal/mol) substitutions included those of Met340 at the tetramer interface and Phe328, Arg337 and Phe338 involved peripherally in the hydrophobic core. Truncation of any of the three residues involved centrally in the hydrophobic core of each primary dimer either prevented folding (Ile332) or allowed folding only at high protein concentration or low temperature (Leu330 and Phe341). Nine hydrophobic residues per monomer constitute critical determinants for the stability and oligomerization status of this p53 domain.

Full Text

The Full Text of this article is available as a PDF (554.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrowsmith C. H., Morin P. New insights into p53 function from structural studies. Oncogene. 1996 Apr 4;12(7):1379–1385. [PubMed] [Google Scholar]
  2. Beaudry G. A., Bertelsen A. H., Sherman M. I. Therapeutic targeting of the p53 tumor suppressor gene. Curr Opin Biotechnol. 1996 Dec;7(6):592–600. doi: 10.1016/s0958-1669(96)80069-3. [DOI] [PubMed] [Google Scholar]
  3. Bowie J. U., Sauer R. T. Equilibrium dissociation and unfolding of the Arc repressor dimer. Biochemistry. 1989 Sep 5;28(18):7139–7143. doi: 10.1021/bi00444a001. [DOI] [PubMed] [Google Scholar]
  4. Chène P., Mittl P., Grütter M. In vitro structure-function analysis of the beta-strand 326-333 of human p53. J Mol Biol. 1997 Nov 7;273(4):873–881. doi: 10.1006/jmbi.1997.1360. [DOI] [PubMed] [Google Scholar]
  5. Clore G. M., Ernst J., Clubb R., Omichinski J. G., Kennedy W. M., Sakaguchi K., Appella E., Gronenborn A. M. Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nat Struct Biol. 1995 Apr;2(4):321–333. doi: 10.1038/nsb0495-321. [DOI] [PubMed] [Google Scholar]
  6. Clore G. M., Omichinski J. G., Sakaguchi K., Zambrano N., Sakamoto H., Appella E., Gronenborn A. M. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science. 1994 Jul 15;265(5170):386–391. doi: 10.1126/science.8023159. [DOI] [PubMed] [Google Scholar]
  7. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  8. Green S. M., Meeker A. K., Shortle D. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state. Biochemistry. 1992 Jun 30;31(25):5717–5728. doi: 10.1021/bi00140a005. [DOI] [PubMed] [Google Scholar]
  9. Hann B. C., Lane D. P. The dominating effect of mutant p53. Nat Genet. 1995 Mar;9(3):221–222. doi: 10.1038/ng0395-221. [DOI] [PubMed] [Google Scholar]
  10. Harvey M., Vogel H., Morris D., Bradley A., Bernstein A., Donehower L. A. A mutant p53 transgene accelerates tumour development in heterozygous but not nullizygous p53-deficient mice. Nat Genet. 1995 Mar;9(3):305–311. doi: 10.1038/ng0395-305. [DOI] [PubMed] [Google Scholar]
  11. Hemsley A., Arnheim N., Toney M. D., Cortopassi G., Galas D. J. A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res. 1989 Aug 25;17(16):6545–6551. doi: 10.1093/nar/17.16.6545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hollstein M., Shomer B., Greenblatt M., Soussi T., Hovig E., Montesano R., Harris C. C. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res. 1996 Jan 1;24(1):141–146. doi: 10.1093/nar/24.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers. Science. 1991 Jul 5;253(5015):49–53. doi: 10.1126/science.1905840. [DOI] [PubMed] [Google Scholar]
  14. Ishioka C., Englert C., Winge P., Yan Y. X., Engelstein M., Friend S. H. Mutational analysis of the carboxy-terminal portion of p53 using both yeast and mammalian cell assays in vivo. Oncogene. 1995 Apr 20;10(8):1485–1492. [PubMed] [Google Scholar]
  15. Jackson S. E., Moracci M., elMasry N., Johnson C. M., Fersht A. R. Effect of cavity-creating mutations in the hydrophobic core of chymotrypsin inhibitor 2. Biochemistry. 1993 Oct 26;32(42):11259–11269. doi: 10.1021/bi00093a001. [DOI] [PubMed] [Google Scholar]
  16. Jeffrey P. D., Gorina S., Pavletich N. P. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science. 1995 Mar 10;267(5203):1498–1502. doi: 10.1126/science.7878469. [DOI] [PubMed] [Google Scholar]
  17. Johnson C. M., Fersht A. R. Protein stability as a function of denaturant concentration: the thermal stability of barnase in the presence of urea. Biochemistry. 1995 May 23;34(20):6795–6804. doi: 10.1021/bi00020a026. [DOI] [PubMed] [Google Scholar]
  18. Johnson C. M., Oliveberg M., Clarke J., Fersht A. R. Thermodynamics of denaturation of mutants of barnase with disulfide crosslinks. J Mol Biol. 1997 Apr 25;268(1):198–208. doi: 10.1006/jmbi.1997.0928. [DOI] [PubMed] [Google Scholar]
  19. Johnson C. R., Morin P. E., Arrowsmith C. H., Freire E. Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor. Biochemistry. 1995 Apr 25;34(16):5309–5316. doi: 10.1021/bi00016a002. [DOI] [PubMed] [Google Scholar]
  20. Kaghad M., Bonnet H., Yang A., Creancier L., Biscan J. C., Valent A., Minty A., Chalon P., Lelias J. M., Dumont X. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997 Aug 22;90(4):809–819. doi: 10.1016/s0092-8674(00)80540-1. [DOI] [PubMed] [Google Scholar]
  21. Ko L. J., Prives C. p53: puzzle and paradigm. Genes Dev. 1996 May 1;10(9):1054–1072. doi: 10.1101/gad.10.9.1054. [DOI] [PubMed] [Google Scholar]
  22. Lee W., Harvey T. S., Yin Y., Yau P., Litchfield D., Arrowsmith C. H. Solution structure of the tetrameric minimum transforming domain of p53. Nat Struct Biol. 1994 Dec;1(12):877–890. doi: 10.1038/nsb1294-877. [DOI] [PubMed] [Google Scholar]
  23. Levine A. J. p53, the cellular gatekeeper for growth and division. Cell. 1997 Feb 7;88(3):323–331. doi: 10.1016/s0092-8674(00)81871-1. [DOI] [PubMed] [Google Scholar]
  24. Matthews B. W. Structural and genetic analysis of the folding and function of T4 lysozyme. FASEB J. 1996 Jan;10(1):35–41. doi: 10.1096/fasebj.10.1.8566545. [DOI] [PubMed] [Google Scholar]
  25. Matthews B. W. Studies on protein stability with T4 lysozyme. Adv Protein Chem. 1995;46:249–278. doi: 10.1016/s0065-3233(08)60337-x. [DOI] [PubMed] [Google Scholar]
  26. McCoy M., Stavridi E. S., Waterman J. L., Wieczorek A. M., Opella S. J., Halazonetis T. D. Hydrophobic side-chain size is a determinant of the three-dimensional structure of the p53 oligomerization domain. EMBO J. 1997 Oct 15;16(20):6230–6236. doi: 10.1093/emboj/16.20.6230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Midgley C. A., Fisher C. J., Bártek J., Vojtesek B., Lane D., Barnes D. M. Analysis of p53 expression in human tumours: an antibody raised against human p53 expressed in Escherichia coli. J Cell Sci. 1992 Jan;101(Pt 1):183–189. doi: 10.1242/jcs.101.1.183. [DOI] [PubMed] [Google Scholar]
  28. Milla M. E., Brown B. M., Sauer R. T. Protein stability effects of a complete set of alanine substitutions in Arc repressor. Nat Struct Biol. 1994 Aug;1(8):518–523. doi: 10.1038/nsb0894-518. [DOI] [PubMed] [Google Scholar]
  29. Miller M., Lubkowski J., Rao J. K., Danishefsky A. T., Omichinski J. G., Sakaguchi K., Sakamoto H., Appella E., Gronenborn A. M., Clore G. M. The oligomerization domain of p53: crystal structure of the trigonal form. FEBS Lett. 1996 Dec 9;399(1-2):166–170. doi: 10.1016/s0014-5793(96)01231-8. [DOI] [PubMed] [Google Scholar]
  30. Mok Y. K., de Prat Gay G., Butler P. J., Bycroft M. Equilibrium dissociation and unfolding of the dimeric human papillomavirus strain-16 E2 DNA-binding domain. Protein Sci. 1996 Feb;5(2):310–319. doi: 10.1002/pro.5560050215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Neet K. E., Timm D. E. Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation. Protein Sci. 1994 Dec;3(12):2167–2174. doi: 10.1002/pro.5560031202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Otzen D. E., Itzhaki L. S., elMasry N. F., Jackson S. E., Fersht A. R. Structure of the transition state for the folding/unfolding of the barley chymotrypsin inhibitor 2 and its implications for mechanisms of protein folding. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10422–10425. doi: 10.1073/pnas.91.22.10422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  34. Pace C. N., Shirley B. A., McNutt M., Gajiwala K. Forces contributing to the conformational stability of proteins. FASEB J. 1996 Jan;10(1):75–83. doi: 10.1096/fasebj.10.1.8566551. [DOI] [PubMed] [Google Scholar]
  35. Pavletich N. P., Chambers K. A., Pabo C. O. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev. 1993 Dec;7(12B):2556–2564. doi: 10.1101/gad.7.12b.2556. [DOI] [PubMed] [Google Scholar]
  36. Picksley S. M., Lane D. P. p53 and Rb: their cellular roles. Curr Opin Cell Biol. 1994 Dec;6(6):853–858. doi: 10.1016/0955-0674(94)90056-6. [DOI] [PubMed] [Google Scholar]
  37. Sakaguchi K., Sakamoto H., Lewis M. S., Anderson C. W., Erickson J. W., Appella E., Xie D. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry. 1997 Aug 19;36(33):10117–10124. doi: 10.1021/bi970759w. [DOI] [PubMed] [Google Scholar]
  38. Sakamoto H., Lewis M. S., Kodama H., Appella E., Sakaguchi K. Specific sequences from the carboxyl terminus of human p53 gene product form anti-parallel tetramers in solution. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8974–8978. doi: 10.1073/pnas.91.19.8974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  40. Serrano L., Kellis J. T., Jr, Cann P., Matouschek A., Fersht A. R. The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability. J Mol Biol. 1992 Apr 5;224(3):783–804. doi: 10.1016/0022-2836(92)90562-x. [DOI] [PubMed] [Google Scholar]
  41. Shaulian E., Zauberman A., Ginsberg D., Oren M. Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol Cell Biol. 1992 Dec;12(12):5581–5592. doi: 10.1128/mcb.12.12.5581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shortle D., Stites W. E., Meeker A. K. Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry. 1990 Sep 4;29(35):8033–8041. doi: 10.1021/bi00487a007. [DOI] [PubMed] [Google Scholar]
  43. Soussi T., May P. Structural aspects of the p53 protein in relation to gene evolution: a second look. J Mol Biol. 1996 Aug 2;260(5):623–637. doi: 10.1006/jmbi.1996.0425. [DOI] [PubMed] [Google Scholar]
  44. Stürzbecher H. W., Brain R., Addison C., Rudge K., Remm M., Grimaldi M., Keenan E., Jenkins J. R. A C-terminal alpha-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene. 1992 Aug;7(8):1513–1523. [PubMed] [Google Scholar]
  45. Wang P., Reed M., Wang Y., Mayr G., Stenger J. E., Anderson M. E., Schwedes J. F., Tegtmeyer P. p53 domains: structure, oligomerization, and transformation. Mol Cell Biol. 1994 Aug;14(8):5182–5191. doi: 10.1128/mcb.14.8.5182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Waterman J. L., Shenk J. L., Halazonetis T. D. The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. EMBO J. 1995 Feb 1;14(3):512–519. doi: 10.1002/j.1460-2075.1995.tb07027.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Waterman M. J., Waterman J. L., Halazonetis T. D. An engineered four-stranded coiled coil substitutes for the tetramerization domain of wild-type p53 and alleviates transdominant inhibition by tumor-derived p53 mutants. Cancer Res. 1996 Jan 1;56(1):158–163. [PubMed] [Google Scholar]
  48. Yu M. H., Weissman J. S., Kim P. S. Contribution of individual side-chains to the stability of BPTI examined by alanine-scanning mutagenesis. J Mol Biol. 1995 Jun 2;249(2):388–397. doi: 10.1006/jmbi.1995.0304. [DOI] [PubMed] [Google Scholar]
  49. el-Deiry W. S., Kern S. E., Pietenpol J. A., Kinzler K. W., Vogelstein B. Definition of a consensus binding site for p53. Nat Genet. 1992 Apr;1(1):45–49. doi: 10.1038/ng0492-45. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES