Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 May 15;17(10):2799–2808. doi: 10.1093/emboj/17.10.2799

Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells.

T van Agthoven 1, T L van Agthoven 1, A Dekker 1, P J van der Spek 1, L Vreede 1, L C Dorssers 1
PMCID: PMC1170620  PMID: 9582273

Abstract

The antiestrogen tamoxifen is important in the treatment of hormone-dependent breast cancer, although development of resistance is inevitable. To unravel the molecular mechanisms of antiestrogen resistance, a search for involved genes was initiated. Retrovirus-mediated insertional mutagenesis was applied to human ZR-75-1 breast cancer cells. Infected cells were subjected to tamoxifen selection and a panel of resistant cell clones was established. Screening for a common integration site resulted in the identification of a novel gene designated BCAR3. Transfer of this locus by cell fusion or transfection of the BCAR3 cDNA to ZR75-1 and MCF-7 cells induces antiestrogen resistance. BCAR3 represents a putative SH2 domain-containing protein and is partly homologous to the cell division cycle protein CDC48.

Full Text

The Full Text of this article is available as a PDF (748.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya U., Jacobs R., Peters J. M., Watson N., Farquhar M. G., Malhotra V. The formation of Golgi stacks from vesiculated Golgi membranes requires two distinct fusion events. Cell. 1995 Sep 22;82(6):895–904. doi: 10.1016/0092-8674(95)90269-4. [DOI] [PubMed] [Google Scholar]
  2. Cailleau R., Young R., Olivé M., Reeves W. J., Jr Breast tumor cell lines from pleural effusions. J Natl Cancer Inst. 1974 Sep;53(3):661–674. doi: 10.1093/jnci/53.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clarke R., Dickson R. B., Lippman M. E. Hormonal aspects of breast cancer. Growth factors, drugs and stromal interactions. Crit Rev Oncol Hematol. 1992 Jan;12(1):1–23. doi: 10.1016/1040-8428(92)90062-u. [DOI] [PubMed] [Google Scholar]
  4. Clarke R., Skaar T., Baumann K., Leonessa F., James M., Lippman J., Thompson E. W., Freter C., Brunner N. Hormonal carcinogenesis in breast cancer: cellular and molecular studies of malignant progression. Breast Cancer Res Treat. 1994;31(2-3):237–248. doi: 10.1007/BF00666157. [DOI] [PubMed] [Google Scholar]
  5. Clarke R., Thompson E. W., Leonessa F., Lippman J., McGarvey M., Frandsen T. L., Brünner N. Hormone resistance, invasiveness, and metastatic potential in breast cancer. Breast Cancer Res Treat. 1993;24(3):227–239. doi: 10.1007/BF01833263. [DOI] [PubMed] [Google Scholar]
  6. Cohen G. B., Ren R., Baltimore D. Modular binding domains in signal transduction proteins. Cell. 1995 Jan 27;80(2):237–248. doi: 10.1016/0092-8674(95)90406-9. [DOI] [PubMed] [Google Scholar]
  7. Dorssers L. C., Veldscholte J. Identification of a novel breast-cancer-anti-estrogen-resistance (BCAR2) locus by cell-fusion-mediated gene transfer in human breast-cancer cells. Int J Cancer. 1997 Aug 7;72(4):700–705. doi: 10.1002/(sici)1097-0215(19970807)72:4<700::aid-ijc24>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  8. Dorssers L. C., van Agthoven T., Dekker A., van Agthoven T. L., Kok E. M. Induction of antiestrogen resistance in human breast cancer cells by random insertional mutagenesis using defective retroviruses: identification of bcar-1, a common integration site. Mol Endocrinol. 1993 Jul;7(7):870–878. doi: 10.1210/mend.7.7.8413311. [DOI] [PubMed] [Google Scholar]
  9. Egerton M., Ashe O. R., Chen D., Druker B. J., Burgess W. H., Samelson L. E. VCP, the mammalian homolog of cdc48, is tyrosine phosphorylated in response to T cell antigen receptor activation. EMBO J. 1992 Oct;11(10):3533–3540. doi: 10.1002/j.1460-2075.1992.tb05436.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Egerton M., Samelson L. E. Biochemical characterization of valosin-containing protein, a protein tyrosine kinase substrate in hematopoietic cells. J Biol Chem. 1994 Apr 15;269(15):11435–11441. [PubMed] [Google Scholar]
  11. Eijdems E. W., Borst P., Jongsma A. P., de Jong S., de Vries E. G., van Groenigen M., Versantvoort C. H., Nieuwint A. W., Baas F. Genetic transfer of non-P-glycoprotein-mediated multidrug resistance (MDR) in somatic cell fusion: dissection of a compound MDR phenotype. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3498–3502. doi: 10.1073/pnas.89.8.3498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Engel L. W., Young N. A., Tralka T. S., Lippman M. E., O'Brien S. J., Joyce M. J. Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Res. 1978 Oct;38(10):3352–3364. [PubMed] [Google Scholar]
  13. Foekens J. A., Portengen H., Look M. P., van Putten W. L., Thirion B., Bontenbal M., Klijn J. G. Relationship of PS2 with response to tamoxifen therapy in patients with recurrent breast cancer. Br J Cancer. 1994 Dec;70(6):1217–1223. doi: 10.1038/bjc.1994.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fröhlich K. U., Fries H. W., Peters J. M., Mecke D. The ATPase activity of purified CDC48p from Saccharomyces cerevisiae shows complex dependence on ATP-, ADP-, and NADH-concentrations and is completely inhibited by NEM. Biochim Biophys Acta. 1995 Nov 15;1253(1):25–32. doi: 10.1016/0167-4838(95)00136-i. [DOI] [PubMed] [Google Scholar]
  15. Fröhlich K. U., Fries H. W., Rüdiger M., Erdmann R., Botstein D., Mecke D. Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation, and gene expression. J Cell Biol. 1991 Aug;114(3):443–453. doi: 10.1083/jcb.114.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Habets G. G., Scholtes E. H., Zuydgeest D., van der Kammen R. A., Stam J. C., Berns A., Collard J. G. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell. 1994 May 20;77(4):537–549. doi: 10.1016/0092-8674(94)90216-x. [DOI] [PubMed] [Google Scholar]
  17. Horwitz K. B. Mechanisms of hormone resistance in breast cancer. Breast Cancer Res Treat. 1993;26(2):119–130. doi: 10.1007/BF00689685. [DOI] [PubMed] [Google Scholar]
  18. Jensen E. V. Hormone dependency of breast cancer. Cancer. 1981 May 15;47(10):2319–2326. doi: 10.1002/1097-0142(19810515)47:10<2319::aid-cncr2820471002>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  19. Johnston S. R., Dowsett M., Smith I. E. Towards a molecular basis for tamoxifen resistance in breast cancer. Ann Oncol. 1992 Jul;3(7):503–511. doi: 10.1093/oxfordjournals.annonc.a058251. [DOI] [PubMed] [Google Scholar]
  20. Johnston S. R., Saccani-Jotti G., Smith I. E., Salter J., Newby J., Coppen M., Ebbs S. R., Dowsett M. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res. 1995 Aug 1;55(15):3331–3338. [PubMed] [Google Scholar]
  21. Jonkers J., Berns A. Retroviral insertional mutagenesis as a strategy to identify cancer genes. Biochim Biophys Acta. 1996 May 16;1287(1):29–57. doi: 10.1016/0304-419x(95)00020-g. [DOI] [PubMed] [Google Scholar]
  22. Jordan V. C. Molecular mechanisms of antiestrogen action in breast cancer. Breast Cancer Res Treat. 1994;31(1):41–52. doi: 10.1007/BF00689675. [DOI] [PubMed] [Google Scholar]
  23. Jordan V. C., Murphy C. S. Endocrine pharmacology of antiestrogens as antitumor agents. Endocr Rev. 1990 Nov;11(4):578–610. doi: 10.1210/edrv-11-4-578. [DOI] [PubMed] [Google Scholar]
  24. King R. J. Receptors, growth factors and steroid insensitivity of tumours. J Endocrinol. 1990 Feb;124(2):179–181. doi: 10.1677/joe.0.1240179. [DOI] [PubMed] [Google Scholar]
  25. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kung H. J., Boerkoel C., Carter T. H. Retroviral mutagenesis of cellular oncogenes: a review with insights into the mechanisms of insertional activation. Curr Top Microbiol Immunol. 1991;171:1–25. doi: 10.1007/978-3-642-76524-7_1. [DOI] [PubMed] [Google Scholar]
  27. Latterich M., Fröhlich K. U., Schekman R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell. 1995 Sep 22;82(6):885–893. doi: 10.1016/0092-8674(95)90268-6. [DOI] [PubMed] [Google Scholar]
  28. Mellman I. Enigma variations: protein mediators of membrane fusion. Cell. 1995 Sep 22;82(6):869–872. doi: 10.1016/0092-8674(95)90018-7. [DOI] [PubMed] [Google Scholar]
  29. Miller A. D., Rosman G. J. Improved retroviral vectors for gene transfer and expression. Biotechniques. 1989 Oct;7(9):980-2, 984-6, 989-90. [PMC free article] [PubMed] [Google Scholar]
  30. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Musgrove E. A., Hamilton J. A., Lee C. S., Sweeney K. J., Watts C. K., Sutherland R. L. Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. Mol Cell Biol. 1993 Jun;13(6):3577–3587. doi: 10.1128/mcb.13.6.3577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nicholson S., Halcrow P., Sainsbury J. R., Angus B., Chambers P., Farndon J. R., Harris A. L. Epidermal growth factor receptor (EGFr) status associated with failure of primary endocrine therapy in elderly postmenopausal patients with breast cancer. Br J Cancer. 1988 Dec;58(6):810–814. doi: 10.1038/bjc.1988.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nicholson S., Sainsbury J. R., Halcrow P., Chambers P., Farndon J. R., Harris A. L. Expression of epidermal growth factor receptors associated with lack of response to endocrine therapy in recurrent breast cancer. Lancet. 1989 Jan 28;1(8631):182–185. doi: 10.1016/s0140-6736(89)91202-6. [DOI] [PubMed] [Google Scholar]
  34. Osborne C. K., Fuqua S. A. Mechanisms of tamoxifen resistance. Breast Cancer Res Treat. 1994;32(1):49–55. doi: 10.1007/BF00666205. [DOI] [PubMed] [Google Scholar]
  35. Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
  36. Rabouille C., Levine T. P., Peters J. M., Warren G. An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell. 1995 Sep 22;82(6):905–914. doi: 10.1016/0092-8674(95)90270-8. [DOI] [PubMed] [Google Scholar]
  37. Rozakis-Adcock M., McGlade J., Mbamalu G., Pelicci G., Daly R., Li W., Batzer A., Thomas S., Brugge J., Pelicci P. G. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature. 1992 Dec 17;360(6405):689–692. doi: 10.1038/360689a0. [DOI] [PubMed] [Google Scholar]
  38. Schulte R. J., Campbell M. A., Fischer W. H., Sefton B. M. Tyrosine phosphorylation of VCP, the mammalian homologue of the Saccharomyces cerevisiae CDC48 protein, is unusually sensitive to stimulation by sodium vanadate and hydrogen peroxide. J Immunol. 1994 Dec 15;153(12):5465–5472. [PubMed] [Google Scholar]
  39. Sieuwerts A. M., Klijn J. G., Foekens J. A. Assessment of the invasive potential of human gynecological tumor cell lines with the in vitro Boyden chamber assay: influences of the ability of cells to migrate through the filter membrane. Clin Exp Metastasis. 1997 Jan;15(1):53–62. doi: 10.1023/a:1018436407280. [DOI] [PubMed] [Google Scholar]
  40. Songyang Z., Shoelson S. E., McGlade J., Olivier P., Pawson T., Bustelo X. R., Barbacid M., Sabe H., Hanafusa H., Yi T. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol Cell Biol. 1994 Apr;14(4):2777–2785. doi: 10.1128/mcb.14.4.2777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Spyratos F., Andrieu C., Hacène K., Chambon P., Rio M. C. pS2 and response to adjuvant hormone therapy in primary breast cancer. Br J Cancer. 1994 Feb;69(2):394–397. doi: 10.1038/bjc.1994.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wolf D. M., Fuqua S. A. Mechanisms of action of antiestrogens. Cancer Treat Rev. 1995 May;21(3):247–271. doi: 10.1016/0305-7372(95)90003-9. [DOI] [PubMed] [Google Scholar]
  43. Wolf D. M., Jordan V. C. William L. McGuire Memorial Symposium. Drug resistance to tamoxifen during breast cancer therapy. Breast Cancer Res Treat. 1993;27(1-2):27–40. doi: 10.1007/BF00683191. [DOI] [PubMed] [Google Scholar]
  44. van Agthoven T., van Agthoven T. L., Dekker A., Foekens J. A., Dorssers L. C. Induction of estrogen independence of ZR-75-1 human breast cancer cells by epigenetic alterations. Mol Endocrinol. 1994 Nov;8(11):1474–1483. doi: 10.1210/mend.8.11.7533260. [DOI] [PubMed] [Google Scholar]
  45. van Agthoven T., van Agthoven T. L., Portengen H., Foekens J. A., Dorssers L. C. Ectopic expression of epidermal growth factor receptors induces hormone independence in ZR-75-1 human breast cancer cells. Cancer Res. 1992 Sep 15;52(18):5082–5088. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES