Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 May 15;17(10):2830–2837. doi: 10.1093/emboj/17.10.2830

Sphingosine kinase-mediated Ca2+ signalling by G-protein-coupled receptors.

D Meyer zu Heringdorf 1, H Lass 1, R Alemany 1, K T Laser 1, E Neumann 1, C Zhang 1, M Schmidt 1, U Rauen 1, K H Jakobs 1, C J van Koppen 1
PMCID: PMC1170623  PMID: 9582276

Abstract

Formation of inositol 1,4,5-trisphosphate (IP3) by phospholipase C (PLC) with subsequent release of Ca2+ from intracellular stores, is one of the major Ca2+ signalling pathways triggered by G-protein-coupled receptors (GPCRs). However, in a large number of cellular systems, Ca2+ mobilization by GPCRs apparently occurs independently of the PLC-IP3 pathway, mediated by an as yet unknown mechanism. The present study investigated whether sphingosine kinase activation, leading to production of sphingosine-1-phosphate (SPP), is involved in GPCR-mediated Ca2+ signalling as proposed for platelet-derived growth factor and FcepsilonRI antigen receptors. Inhibition of sphingosine kinase by DL-threo-dihydrosphingosine and N,N-dimethylsphingosine markedly inhibited [Ca2+]i increases elicited by m2 and m3 muscarinic acetylcholine receptors (mAChRs) expressed in HEK-293 cells without affecting mAChR-induced PLC stimulation. Activation of mAChRs rapidly and transiently stimulated production of SPP in HEK-293 cells. Finally, intracellular injection of SPP induced a rapid and transient Ca2+ mobilization in HEK-293 cells which was not antagonized by heparin. We conclude that mAChRs utilize the sphingosine kinase-SPP pathway in addition to PLC-IP3 to mediate Ca2+ mobilization. As Ca2+ signalling by various, but not all, GPCRs in different cell types was likewise attenuated by the sphingosine kinase inhibitors, we suggest a general role for sphingosine kinase, besides PLC, in mediation of GPCR-induced Ca2+ signalling.

Full Text

The Full Text of this article is available as a PDF (382.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaven M. A. Calcium signalling: sphingosine kinase versus phospholipase C? Curr Biol. 1996 Jul 1;6(7):798–801. doi: 10.1016/s0960-9822(02)00598-5. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  3. Bornfeldt K. E., Graves L. M., Raines E. W., Igarashi Y., Wayman G., Yamamura S., Yatomi Y., Sidhu J. S., Krebs E. G., Hakomori S. Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction. J Cell Biol. 1995 Jul;130(1):193–206. doi: 10.1083/jcb.130.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buehrer B. M., Bell R. M. Inhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways. J Biol Chem. 1992 Feb 15;267(5):3154–3159. [PubMed] [Google Scholar]
  5. Bünemann M., Liliom K., Brandts B. K., Pott L., Tseng J. L., Desiderio D. M., Sun G., Miller D., Tigyi G. A novel membrane receptor with high affinity for lysosphingomyelin and sphingosine 1-phosphate in atrial myocytes. EMBO J. 1996 Oct 15;15(20):5527–5534. [PMC free article] [PubMed] [Google Scholar]
  6. Choi O. H., Kim J. H., Kinet J. P. Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature. 1996 Apr 18;380(6575):634–636. doi: 10.1038/380634a0. [DOI] [PubMed] [Google Scholar]
  7. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  8. Cockcroft S., Thomas G. M. Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J. 1992 Nov 15;288(Pt 1):1–14. doi: 10.1042/bj2880001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Exton J. H. Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol. 1996;36:481–509. doi: 10.1146/annurev.pa.36.040196.002405. [DOI] [PubMed] [Google Scholar]
  10. Frelin C., Breittmayer J. P., Vigne P. ADP induces inositol phosphate-independent intracellular Ca2+ mobilization in brain capillary endothelial cells. J Biol Chem. 1993 Apr 25;268(12):8787–8792. [PubMed] [Google Scholar]
  11. Ghosh T. K., Bian J., Gill D. L. Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science. 1990 Jun 29;248(4963):1653–1656. doi: 10.1126/science.2163543. [DOI] [PubMed] [Google Scholar]
  12. Ghosh T. K., Bian J., Gill D. L. Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. J Biol Chem. 1994 Sep 9;269(36):22628–22635. [PubMed] [Google Scholar]
  13. Higashida H., Yokoyama S., Hashii M., Taketo M., Higashida M., Takayasu T., Ohshima T., Takasawa S., Okamoto H., Noda M. Muscarinic receptor-mediated dual regulation of ADP-ribosyl cyclase in NG108-15 neuronal cell membranes. J Biol Chem. 1997 Dec 12;272(50):31272–31277. doi: 10.1074/jbc.272.50.31272. [DOI] [PubMed] [Google Scholar]
  14. Igarashi Y., Hakomori S., Toyokuni T., Dean B., Fujita S., Sugimoto M., Ogawa T., el-Ghendy K., Racker E. Effect of chemically well-defined sphingosine and its N-methyl derivatives on protein kinase C and src kinase activities. Biochemistry. 1989 Aug 22;28(17):6796–6800. doi: 10.1021/bi00443a002. [DOI] [PubMed] [Google Scholar]
  15. Lee S. B., Rhee S. G. Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Curr Opin Cell Biol. 1995 Apr;7(2):183–189. doi: 10.1016/0955-0674(95)80026-3. [DOI] [PubMed] [Google Scholar]
  16. Louie D. D., Kisic A., Schroefer G. J., Jr Sphingolipid base metabolism. Partial purification and properties of sphinganine kinase of brain. J Biol Chem. 1976 Aug 10;251(15):4557–4564. [PubMed] [Google Scholar]
  17. Lümmen G., Virchow S., Rümenapp U., Schmidt M., Wieland T., Otto T., Rübben H., Jakobs K. H. Identification of G protein-coupled receptors potently stimulating migration of human transitional-cell carcinoma cells. Naunyn Schmiedebergs Arch Pharmacol. 1997 Dec;356(6):769–776. doi: 10.1007/pl00005117. [DOI] [PubMed] [Google Scholar]
  18. Mattie M., Brooker G., Spiegel S. Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway. J Biol Chem. 1994 Feb 4;269(5):3181–3188. [PubMed] [Google Scholar]
  19. Meyer zu Heringdrof D., van Koppen C. J., Windorfer B., Himmel H. M., Jakobs K. H. Calcium signalling by G protein-coupled sphingolipid receptors in bovine aortic endothelial cells. Naunyn Schmiedebergs Arch Pharmacol. 1996 Oct;354(4):397–403. doi: 10.1007/BF00168428. [DOI] [PubMed] [Google Scholar]
  20. Michel M. C., Brass L. F., Williams A., Bokoch G. M., LaMorte V. J., Motulsky H. J. Alpha 2-adrenergic receptor stimulation mobilizes intracellular Ca2+ in human erythroleukemia cells. J Biol Chem. 1989 Mar 25;264(9):4986–4991. [PubMed] [Google Scholar]
  21. Mikoshiba K. The InsP3 receptor and intracellular Ca2+ signaling. Curr Opin Neurobiol. 1997 Jun;7(3):339–345. doi: 10.1016/s0959-4388(97)80061-x. [DOI] [PubMed] [Google Scholar]
  22. Motulsky H. J., Michel M. C. Neuropeptide Y mobilizes Ca2+ and inhibits adenylate cyclase in human erythroleukemia cells. Am J Physiol. 1988 Dec;255(6 Pt 1):E880–E885. doi: 10.1152/ajpendo.1988.255.6.E880. [DOI] [PubMed] [Google Scholar]
  23. Olivera A., Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature. 1993 Oct 7;365(6446):557–560. doi: 10.1038/365557a0. [DOI] [PubMed] [Google Scholar]
  24. Olivera A., Zhang H., Carlson R. O., Mattie M. E., Schmidt R. R., Spiegel S. Stereospecificity of sphingosine-induced intracellular calcium mobilization and cellular proliferation. J Biol Chem. 1994 Jul 8;269(27):17924–17930. [PubMed] [Google Scholar]
  25. Postma F. R., Jalink K., Hengeveld T., Moolenaar W. H. Sphingosine-1-phosphate rapidly induces Rho-dependent neurite retraction: action through a specific cell surface receptor. EMBO J. 1996 May 15;15(10):2388–2392. [PMC free article] [PubMed] [Google Scholar]
  26. Ribeiro C. M., Reece J., Putney J. W., Jr Role of the cytoskeleton in calcium signaling in NIH 3T3 cells. An intact cytoskeleton is required for agonist-induced [Ca2+]i signaling, but not for capacitative calcium entry. J Biol Chem. 1997 Oct 17;272(42):26555–26561. doi: 10.1074/jbc.272.42.26555. [DOI] [PubMed] [Google Scholar]
  27. Schmidt M., Bienek C., Rümenapp U., Zhang C., Lümmen G., Jakobs K. H., Just I., Aktories K., Moos M., von Eichel-Streiber C. A role for Rho in receptor- and G protein-stimulated phospholipase C. Reduction in phosphatidylinositol 4,5-bisphosphate by Clostridium difficile toxin B. Naunyn Schmiedebergs Arch Pharmacol. 1996 Jul;354(2):87–94. doi: 10.1007/BF00178707. [DOI] [PubMed] [Google Scholar]
  28. Schmidt M., Bienek C., van Koppen C. J., Michel M. C., Jakobs K. H. Differential calcium signalling by m2 and m3 muscarinic acetylcholine receptors in a single cell type. Naunyn Schmiedebergs Arch Pharmacol. 1995 Nov;352(5):469–476. doi: 10.1007/BF00169379. [DOI] [PubMed] [Google Scholar]
  29. Seuwen K., Boddeke H. G. Heparin-insensitive calcium release from intracellular stores triggered by the recombinant human parathyroid hormone receptor. Br J Pharmacol. 1995 Apr;114(8):1613–1620. doi: 10.1111/j.1476-5381.1995.tb14947.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sugawara H., Kurosaki M., Takata M., Kurosaki T. Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J. 1997 Jun 2;16(11):3078–3088. doi: 10.1093/emboj/16.11.3078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tashjian A. H., Jr, Heslop J. P., Berridge M. J. Subsecond and second changes in inositol polyphosphates in GH4C1 cells induced by thyrotropin-releasing hormone. Biochem J. 1987 Apr 1;243(1):305–308. doi: 10.1042/bj2430305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yatomi Y., Ruan F., Megidish T., Toyokuni T., Hakomori S., Igarashi Y. N,N-dimethylsphingosine inhibition of sphingosine kinase and sphingosine 1-phosphate activity in human platelets. Biochemistry. 1996 Jan 16;35(2):626–633. doi: 10.1021/bi9515533. [DOI] [PubMed] [Google Scholar]
  33. van Koppen C., Meyer zu Heringdorf M., Laser K. T., Zhang C., Jakobs K. H., Bünemann M., Pott L. Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine-1-phosphate. J Biol Chem. 1996 Jan 26;271(4):2082–2087. doi: 10.1074/jbc.271.4.2082. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES