Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 May 15;17(10):2838–2845. doi: 10.1093/emboj/17.10.2838

An intersection of the cAMP/PKA and two-component signal transduction systems in Dictyostelium.

P A Thomason 1, D Traynor 1, G Cavet 1, W T Chang 1, A J Harwood 1, R R Kay 1
PMCID: PMC1170624  PMID: 9582277

Abstract

Terminal differentiation of both stalk and spore cells in Dictyostelium can be triggered by activation of cAMP-dependent protein kinase (PKA). A screen for mutants where stalk and spore cells mature in isolation produced three genes which may act as negative regulators of PKA: rdeC (encoding the PKA regulatory subunit), regA and rdeA. The biochemical properties of RegA were studied in detail. One domain is a cAMP phosphodiesterase (Km approximately 5 microM); the other is homologous to response regulators (RRs) of two-component signal transduction systems. It can accept phosphate from acetyl phosphate in a reaction typical of RRs, with transfer dependent on Asp212, the predicted phosphoacceptor. RegA phosphodiesterase activity is stimulated up to 8-fold by the phosphodonor phosphoramidate, with stimulation again dependent on Asp212. This indicates that phosphorylation of the RR domain activates the phosphodiesterase domain. Overexpression of the RR domain in wild-type cells phenocopies a regA null. We interpret this dominant-negative effect as due to a diversion of the normal flow of phosphates from RegA, thus preventing its activation. Mutation of rdeA is known to produce elevated cAMP levels. We propose that cAMP breakdown is controlled by a phosphorelay system which activates RegA, and may include RdeA. Cell maturation should be triggered when this system is inhibited.

Full Text

The Full Text of this article is available as a PDF (291.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe K., Yanagisawa K. A new class of rapidly developing mutants in Dictyostelium discoideum: implications for cyclic AMP metabolism and cell differentiation. Dev Biol. 1983 Jan;95(1):200–210. doi: 10.1016/0012-1606(83)90018-0. [DOI] [PubMed] [Google Scholar]
  2. Anjard C., Pinaud S., Kay R. R., Reymond C. D. Overexpression of Dd PK2 protein kinase causes rapid development and affects the intracellular cAMP pathway of Dictyostelium discoideum. Development. 1992 Jul;115(3):785–790. doi: 10.1242/dev.115.3.785. [DOI] [PubMed] [Google Scholar]
  3. Appleby J. L., Parkinson J. S., Bourret R. B. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell. 1996 Sep 20;86(6):845–848. doi: 10.1016/s0092-8674(00)80158-0. [DOI] [PubMed] [Google Scholar]
  4. Berks M., Kay R. R. Cyclic AMP is an inhibitor of stalk cell differentiation in Dictyostelium discoideum. Dev Biol. 1988 Mar;126(1):108–114. doi: 10.1016/0012-1606(88)90244-8. [DOI] [PubMed] [Google Scholar]
  5. Boucher P. E., Menozzi F. D., Locht C. The modular architecture of bacterial response regulators. Insights into the activation mechanism of the BvgA transactivator of Bordetella pertussis. J Mol Biol. 1994 Aug 19;241(3):363–377. doi: 10.1006/jmbi.1994.1513. [DOI] [PubMed] [Google Scholar]
  6. Bourret R. B., Borkovich K. A., Simon M. I. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu Rev Biochem. 1991;60:401–441. doi: 10.1146/annurev.bi.60.070191.002153. [DOI] [PubMed] [Google Scholar]
  7. Burbulys D., Trach K. A., Hoch J. A. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell. 1991 Feb 8;64(3):545–552. doi: 10.1016/0092-8674(91)90238-t. [DOI] [PubMed] [Google Scholar]
  8. Feng J., Atkinson M. R., McCleary W., Stock J. B., Wanner B. L., Ninfa A. J. Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J Bacteriol. 1992 Oct;174(19):6061–6070. doi: 10.1128/jb.174.19.6061-6070.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Firtel R. A. Interacting signaling pathways controlling multicellular development in Dictyostelium. Curr Opin Genet Dev. 1996 Oct;6(5):545–554. doi: 10.1016/s0959-437x(96)80082-7. [DOI] [PubMed] [Google Scholar]
  10. Harwood A. J., Hopper N. A., Simon M. N., Bouzid S., Veron M., Williams J. G. Multiple roles for cAMP-dependent protein kinase during Dictyostelium development. Dev Biol. 1992 Jan;149(1):90–99. doi: 10.1016/0012-1606(92)90266-j. [DOI] [PubMed] [Google Scholar]
  11. Harwood A. J., Hopper N. A., Simon M. N., Driscoll D. M., Veron M., Williams J. G. Culmination in Dictyostelium is regulated by the cAMP-dependent protein kinase. Cell. 1992 May 15;69(4):615–624. doi: 10.1016/0092-8674(92)90225-2. [DOI] [PubMed] [Google Scholar]
  12. Harwood A. J., Plyte S. E., Woodgett J., Strutt H., Kay R. R. Glycogen synthase kinase 3 regulates cell fate in Dictyostelium. Cell. 1995 Jan 13;80(1):139–148. doi: 10.1016/0092-8674(95)90458-1. [DOI] [PubMed] [Google Scholar]
  13. Hopper N. A., Anjard C., Reymond C. D., Williams J. G. Induction of terminal differentiation of Dictyostelium by cAMP-dependent protein kinase and opposing effects of intracellulr and extracellular cAMP on stalk cell differentiation. Development. 1993 Sep;119(1):147–154. doi: 10.1242/dev.119.1.147. [DOI] [PubMed] [Google Scholar]
  14. Hopper N. A., Harwood A. J., Bouzid S., Véron M., Williams J. G. Activation of the prespore and spore cell pathway of Dictyostelium differentiation by cAMP-dependent protein kinase and evidence for its upstream regulation by ammonia. EMBO J. 1993 Jun;12(6):2459–2466. doi: 10.1002/j.1460-2075.1993.tb05900.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Houslay M. D., Milligan G. Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci. 1997 Jun;22(6):217–224. doi: 10.1016/s0968-0004(97)01050-5. [DOI] [PubMed] [Google Scholar]
  16. Jiang J., Struhl G. Protein kinase A and hedgehog signaling in Drosophila limb development. Cell. 1995 Feb 24;80(4):563–572. doi: 10.1016/0092-8674(95)90510-3. [DOI] [PubMed] [Google Scholar]
  17. KORNBERG A., KORNBERG S. R., SIMMS E. S. Metaphosphate synthesis by an enzyme from Escherichia coli. Biochim Biophys Acta. 1956 Apr;20(1):215–227. doi: 10.1016/0006-3002(56)90280-3. [DOI] [PubMed] [Google Scholar]
  18. Kay R. R. Cell differentiation in monolayers and the investigation of slime mold morphogens. Methods Cell Biol. 1987;28:433–448. doi: 10.1016/s0091-679x(08)61661-1. [DOI] [PubMed] [Google Scholar]
  19. Kay R. R. cAMP and spore differentiation in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1982 May;79(10):3228–3231. doi: 10.1073/pnas.79.10.3228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kubohara Y., Maeda M., Okamoto K. Analysis of the maturation process of prestalk cells in Dictyostelium discoideum. Exp Cell Res. 1993 Jul;207(1):107–114. doi: 10.1006/excr.1993.1168. [DOI] [PubMed] [Google Scholar]
  21. Kuspa A., Loomis W. F. Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8803–8807. doi: 10.1073/pnas.89.18.8803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lacombe M. L., Podgorski G. J., Franke J., Kessin R. H. Molecular cloning and developmental expression of the cyclic nucleotide phosphodiesterase gene of Dictyostelium discoideum. J Biol Chem. 1986 Dec 25;261(36):16811–16817. [PubMed] [Google Scholar]
  23. Li W., Ohlmeyer J. T., Lane M. E., Kalderon D. Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell. 1995 Feb 24;80(4):553–562. doi: 10.1016/0092-8674(95)90509-x. [DOI] [PubMed] [Google Scholar]
  24. Loomis W. F., Shaulsky G., Wang N. Histidine kinases in signal transduction pathways of eukaryotes. J Cell Sci. 1997 May;110(Pt 10):1141–1145. doi: 10.1242/jcs.110.10.1141. [DOI] [PubMed] [Google Scholar]
  25. Lukat G. S., McCleary W. R., Stock A. M., Stock J. B. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):718–722. doi: 10.1073/pnas.89.2.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mann S. K., Firtel R. A. cAMP-dependent protein kinase differentially regulates prestalk and prespore differentiation during Dictyostelium development. Development. 1993 Sep;119(1):135–146. doi: 10.1242/dev.119.1.135. [DOI] [PubMed] [Google Scholar]
  27. Mann S. K., Richardson D. L., Lee S., Kimmel A. R., Firtel R. A. Expression of cAMP-dependent protein kinase in prespore cells is sufficient to induce spore cell differentiation in Dictyostelium. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10561–10565. doi: 10.1073/pnas.91.22.10561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McCleary W. R., Stock J. B. Acetyl phosphate and the activation of two-component response regulators. J Biol Chem. 1994 Dec 16;269(50):31567–31572. [PubMed] [Google Scholar]
  29. Parent C. A., Devreotes P. N. Molecular genetics of signal transduction in Dictyostelium. Annu Rev Biochem. 1996;65:411–440. doi: 10.1146/annurev.bi.65.070196.002211. [DOI] [PubMed] [Google Scholar]
  30. Parkinson J. S., Kofoid E. C. Communication modules in bacterial signaling proteins. Annu Rev Genet. 1992;26:71–112. doi: 10.1146/annurev.ge.26.120192.000443. [DOI] [PubMed] [Google Scholar]
  31. Posas F., Wurgler-Murphy S. M., Maeda T., Witten E. A., Thai T. C., Saito H. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell. 1996 Sep 20;86(6):865–875. doi: 10.1016/s0092-8674(00)80162-2. [DOI] [PubMed] [Google Scholar]
  32. Richardson D. L., Loomis W. F., Kimmel A. R. Progression of an inductive signal activates sporulation in Dictyostelium discoideum. Development. 1994 Oct;120(10):2891–2900. doi: 10.1242/dev.120.10.2891. [DOI] [PubMed] [Google Scholar]
  33. Riley B. B., Jensen B. R., Barclay S. L. Conditions that elevate intracellular cyclic AMP levels promote spore formation in Dictyostelium. Differentiation. 1989 Jul;41(1):5–13. doi: 10.1111/j.1432-0436.1989.tb00726.x. [DOI] [PubMed] [Google Scholar]
  34. Sanders D. A., Gillece-Castro B. L., Burlingame A. L., Koshland D. E., Jr Phosphorylation site of NtrC, a protein phosphatase whose covalent intermediate activates transcription. J Bacteriol. 1992 Aug;174(15):5117–5122. doi: 10.1128/jb.174.15.5117-5122.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schuster S. C., Noegel A. A., Oehme F., Gerisch G., Simon M. I. The hybrid histidine kinase DokA is part of the osmotic response system of Dictyostelium. EMBO J. 1996 Aug 1;15(15):3880–3889. [PMC free article] [PubMed] [Google Scholar]
  36. Shaulsky G., Escalante R., Loomis W. F. Developmental signal transduction pathways uncovered by genetic suppressors. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15260–15265. doi: 10.1073/pnas.93.26.15260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shaulsky G., Fuller D., Loomis W. F. A cAMP-phosphodiesterase controls PKA-dependent differentiation. Development. 1998 Feb;125(4):691–699. doi: 10.1242/dev.125.4.691. [DOI] [PubMed] [Google Scholar]
  38. Simon M. N., Pelegrini O., Veron M., Kay R. R. Mutation of protein kinase A causes heterochronic development of Dictyostelium. Nature. 1992 Mar 12;356(6365):171–172. doi: 10.1038/356171a0. [DOI] [PubMed] [Google Scholar]
  39. Swanson R. V., Alex L. A., Simon M. I. Histidine and aspartate phosphorylation: two-component systems and the limits of homology. Trends Biochem Sci. 1994 Nov;19(11):485–490. doi: 10.1016/0968-0004(94)90135-x. [DOI] [PubMed] [Google Scholar]
  40. Volz K. Structural conservation in the CheY superfamily. Biochemistry. 1993 Nov 9;32(44):11741–11753. doi: 10.1021/bi00095a001. [DOI] [PubMed] [Google Scholar]
  41. Wang N., Shaulsky G., Escalante R., Loomis W. F. A two-component histidine kinase gene that functions in Dictyostelium development. EMBO J. 1996 Aug 1;15(15):3890–3898. [PMC free article] [PubMed] [Google Scholar]
  42. Watts D. J., Ashworth J. M. Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J. 1970 Sep;119(2):171–174. doi: 10.1042/bj1190171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zapf J. W., Hoch J. A., Whiteley J. M. A phosphotransferase activity of the Bacillus subtilis sporulation protein Spo0F that employs phosphoramidate substrates. Biochemistry. 1996 Mar 5;35(9):2926–2933. doi: 10.1021/bi9519361. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES