Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 May 15;17(10):2846–2854. doi: 10.1093/emboj/17.10.2846

Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1.

C Günes 1, R Heuchel 1, O Georgiev 1, K H Müller 1, P Lichtlen 1, H Blüthmann 1, S Marino 1, A Aguzzi 1, W Schaffner 1
PMCID: PMC1170625  PMID: 9582278

Abstract

We have shown previously that the heavy metal-responsive transcriptional activator MTF-1 regulates the basal and heavy metal-induced expression of metallothioneins. To investigate the physiological function of MTF-1, we generated null mutant mice by targeted gene disruption. Embryos lacking MTF-1 die in utero at approximately day 14 of gestation. They show impaired development of hepatocytes and, at later stages, liver decay and generalized edema. MTF-1(-/-) embryos fail to transcribe metallothionein I and II genes, and also show diminished transcripts of the gene which encodes the heavy-chain subunit of the gamma-glutamylcysteine synthetase, a key enzyme for glutathione biosynthesis. Metallothionein and glutathione are involved in heavy metal homeostasis and detoxification processes, such as scavenging reactive oxygen intermediates. Accordingly, primary mouse embryo fibroblasts lacking MTF-1 show increased susceptibility to the cytotoxic effects of cadmium or hydrogen peroxide. Thus, MTF-1 may help to control metal homeostasis and probably cellular redox state, especially during liver development. We also note that the MTF-1 null mutant phenotype bears some similarity to those of two other regulators of cellular stress response, namely c-Jun and NF-kappaB (p65/RelA).

Full Text

The Full Text of this article is available as a PDF (652.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angel P., Pöting A., Mallick U., Rahmsdorf H. J., Schorpp M., Herrlich P. Induction of metallothionein and other mRNA species by carcinogens and tumor promoters in primary human skin fibroblasts. Mol Cell Biol. 1986 May;6(5):1760–1766. doi: 10.1128/mcb.6.5.1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bagchi D., Bagchi M., Hassoun E. A., Stohs S. J. Cadmium-induced excretion of urinary lipid metabolites, DNA damage, glutathione depletion, and hepatic lipid peroxidation in Sprague-Dawley rats. Biol Trace Elem Res. 1996 May;52(2):143–154. doi: 10.1007/BF02789456. [DOI] [PubMed] [Google Scholar]
  3. Beg A. A., Sha W. C., Bronson R. T., Ghosh S., Baltimore D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature. 1995 Jul 13;376(6536):167–170. doi: 10.1038/376167a0. [DOI] [PubMed] [Google Scholar]
  4. Bladt F., Riethmacher D., Isenmann S., Aguzzi A., Birchmeier C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature. 1995 Aug 31;376(6543):768–771. doi: 10.1038/376768a0. [DOI] [PubMed] [Google Scholar]
  5. Borenfreund E., Puerner J. A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett. 1985 Feb-Mar;24(2-3):119–124. doi: 10.1016/0378-4274(85)90046-3. [DOI] [PubMed] [Google Scholar]
  6. Brugnera E., Georgiev O., Radtke F., Heuchel R., Baker E., Sutherland G. R., Schaffner W. Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucleic Acids Res. 1994 Aug 11;22(15):3167–3173. doi: 10.1093/nar/22.15.3167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chan H. M., Cherian M. G. Protective roles of metallothionein and glutathione in hepatotoxicity of cadmium. Toxicology. 1992;72(3):281–290. doi: 10.1016/0300-483x(92)90179-i. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Dalton T., Palmiter R. D., Andrews G. K. Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nucleic Acids Res. 1994 Nov 25;22(23):5016–5023. doi: 10.1093/nar/22.23.5016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dalton T., Paria B. C., Fernando L. P., Huet-Hudson Y. M., Dey S. K., Andrews G. K. Activation of the chicken metallothionein promoter by metals and oxidative stress in cultured cells and transgenic mice. Comp Biochem Physiol B Biochem Mol Biol. 1997 Jan;116(1):75–86. doi: 10.1016/s0305-0491(96)00224-6. [DOI] [PubMed] [Google Scholar]
  11. Friling R. S., Bergelson S., Daniel V. Two adjacent AP-1-like binding sites form the electrophile-responsive element of the murine glutathione S-transferase Ya subunit gene. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):668–672. doi: 10.1073/pnas.89.2.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hentsch B., Lyons I., Li R., Hartley L., Lints T. J., Adams J. M., Harvey R. P. Hlx homeo box gene is essential for an inductive tissue interaction that drives expansion of embryonic liver and gut. Genes Dev. 1996 Jan 1;10(1):70–79. doi: 10.1101/gad.10.1.70. [DOI] [PubMed] [Google Scholar]
  13. Herrlich P., Sachsenmaier C., Radler-Pohl A., Gebel S., Blattner C., Rahmsdorf H. J. The mammalian UV response: mechanism of DNA damage induced gene expression. Adv Enzyme Regul. 1994;34:381–395. doi: 10.1016/0065-2571(94)90024-8. [DOI] [PubMed] [Google Scholar]
  14. Heuchel R., Radtke F., Georgiev O., Stark G., Aguet M., Schaffner W. The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J. 1994 Jun 15;13(12):2870–2875. doi: 10.1002/j.1460-2075.1994.tb06581.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hilberg F., Aguzzi A., Howells N., Wagner E. F. c-jun is essential for normal mouse development and hepatogenesis. Nature. 1993 Sep 9;365(6442):179–181. doi: 10.1038/365179a0. [DOI] [PubMed] [Google Scholar]
  16. Ishikawa T., Bao J. J., Yamane Y., Akimaru K., Frindrich K., Wright C. D., Kuo M. T. Coordinated induction of MRP/GS-X pump and gamma-glutamylcysteine synthetase by heavy metals in human leukemia cells. J Biol Chem. 1996 Jun 21;271(25):14981–14988. doi: 10.1074/jbc.271.25.14981. [DOI] [PubMed] [Google Scholar]
  17. Iszard M. B., Liu J., Klaassen C. D. Effect of several metallothionein inducers on oxidative stress defense mechanisms in rats. Toxicology. 1995 Dec 15;104(1-3):25–33. doi: 10.1016/0300-483x(95)03118-y. [DOI] [PubMed] [Google Scholar]
  18. Karin M., Liu Z. g., Zandi E. AP-1 function and regulation. Curr Opin Cell Biol. 1997 Apr;9(2):240–246. doi: 10.1016/s0955-0674(97)80068-3. [DOI] [PubMed] [Google Scholar]
  19. Kern S. R., Smith H. A., Fontaine D., Bryan S. E. Partitioning of zinc and copper in fetal liver subfractions: appearance of metallothionein-like proteins during development. Toxicol Appl Pharmacol. 1981 Jun 30;59(2):346–354. doi: 10.1016/0041-008x(81)90206-4. [DOI] [PubMed] [Google Scholar]
  20. Kägi J. H., Kojima Y. Chemistry and biochemistry of metallothionein. Experientia Suppl. 1987;52:25–61. doi: 10.1007/978-3-0348-6784-9_3. [DOI] [PubMed] [Google Scholar]
  21. Kägi J. H. Overview of metallothionein. Methods Enzymol. 1991;205:613–626. doi: 10.1016/0076-6879(91)05145-l. [DOI] [PubMed] [Google Scholar]
  22. Lazo J. S., Kondo Y., Dellapiazza D., Michalska A. E., Choo K. H., Pitt B. R. Enhanced sensitivity to oxidative stress in cultured embryonic cells from transgenic mice deficient in metallothionein I and II genes. J Biol Chem. 1995 Mar 10;270(10):5506–5510. doi: 10.1074/jbc.270.10.5506. [DOI] [PubMed] [Google Scholar]
  23. Lieberman M. W., Wiseman A. L., Shi Z. Z., Carter B. Z., Barrios R., Ou C. N., Chévez-Barrios P., Wang Y., Habib G. M., Goodman J. C. Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7923–7926. doi: 10.1073/pnas.93.15.7923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liu J. H., Miyakawa H., Takano T., Marumo F., Sato C. Effects of cadmium on glutathione metabolism in Hep G2 cells. Res Commun Mol Pathol Pharmacol. 1995 Oct;90(1):143–152. [PubMed] [Google Scholar]
  25. Maellaro E., Casini A. F., Del Bello B., Comporti M. Lipid peroxidation and antioxidant systems in the liver injury produced by glutathione depleting agents. Biochem Pharmacol. 1990 May 15;39(10):1513–1521. doi: 10.1016/0006-2952(90)90515-m. [DOI] [PubMed] [Google Scholar]
  26. Maret W. Metallothionein/disulfide interactions, oxidative stress, and the mobilization of cellular zinc. Neurochem Int. 1995 Jul;27(1):111–117. doi: 10.1016/0197-0186(94)00173-r. [DOI] [PubMed] [Google Scholar]
  27. Masters B. A., Kelly E. J., Quaife C. J., Brinster R. L., Palmiter R. D. Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):584–588. doi: 10.1073/pnas.91.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Meister A. Mitochondrial changes associated with glutathione deficiency. Biochim Biophys Acta. 1995 May 24;1271(1):35–42. doi: 10.1016/0925-4439(95)00007-q. [DOI] [PubMed] [Google Scholar]
  29. Michalska A. E., Choo K. H. Targeting and germ-line transmission of a null mutation at the metallothionein I and II loci in mouse. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8088–8092. doi: 10.1073/pnas.90.17.8088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mueller P. R., Salser S. J., Wold B. Constitutive and metal-inducible protein:DNA interactions at the mouse metallothionein I promoter examined by in vivo and in vitro footprinting. Genes Dev. 1988 Apr;2(4):412–427. doi: 10.1101/gad.2.4.412. [DOI] [PubMed] [Google Scholar]
  31. Mulcahy R. T., Gipp J. J. Identification of a putative antioxidant response element in the 5'-flanking region of the human gamma-glutamylcysteine synthetase heavy subunit gene. Biochem Biophys Res Commun. 1995 Apr 6;209(1):227–233. doi: 10.1006/bbrc.1995.1493. [DOI] [PubMed] [Google Scholar]
  32. Ouellette A. J. Metallothionein mRNA expression in fetal mouse organs. Dev Biol. 1982 Jul;92(1):240–246. doi: 10.1016/0012-1606(82)90168-3. [DOI] [PubMed] [Google Scholar]
  33. Pahl H. L., Baeuerle P. A. Oxygen and the control of gene expression. Bioessays. 1994 Jul;16(7):497–502. doi: 10.1002/bies.950160709. [DOI] [PubMed] [Google Scholar]
  34. Palmiter R. D., Findley S. D. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 1995 Feb 15;14(4):639–649. doi: 10.1002/j.1460-2075.1995.tb07042.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Palmiter R. D., Findley S. D., Whitmore T. E., Durnam D. M. MT-III, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6333–6337. doi: 10.1073/pnas.89.14.6333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Quaife C. J., Findley S. D., Erickson J. C., Froelick G. J., Kelly E. J., Zambrowicz B. P., Palmiter R. D. Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry. 1994 Jun 14;33(23):7250–7259. doi: 10.1021/bi00189a029. [DOI] [PubMed] [Google Scholar]
  37. Quaife C., Hammer R. E., Mottet N. K., Palmiter R. D. Glucocorticoid regulation of metallothionein during murine development. Dev Biol. 1986 Dec;118(2):549–555. doi: 10.1016/0012-1606(86)90025-4. [DOI] [PubMed] [Google Scholar]
  38. Radtke F., Georgiev O., Müller H. P., Brugnera E., Schaffner W. Functional domains of the heavy metal-responsive transcription regulator MTF-1. Nucleic Acids Res. 1995 Jun 25;23(12):2277–2286. doi: 10.1093/nar/23.12.2277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Radtke F., Heuchel R., Georgiev O., Hergersberg M., Gariglio M., Dembic Z., Schaffner W. Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J. 1993 Apr;12(4):1355–1362. doi: 10.1002/j.1460-2075.1993.tb05780.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rahman I., Smith C. A., Lawson M. F., Harrison D. J., MacNee W. Induction of gamma-glutamylcysteine synthetase by cigarette smoke is associated with AP-1 in human alveolar epithelial cells. FEBS Lett. 1996 Oct 28;396(1):21–25. doi: 10.1016/0014-5793(96)01027-7. [DOI] [PubMed] [Google Scholar]
  41. Schmidt C., Bladt F., Goedecke S., Brinkmann V., Zschiesche W., Sharpe M., Gherardi E., Birchmeier C. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995 Feb 23;373(6516):699–702. doi: 10.1038/373699a0. [DOI] [PubMed] [Google Scholar]
  42. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Searle P. F., Davison B. L., Stuart G. W., Wilkie T. M., Norstedt G., Palmiter R. D. Regulation, linkage, and sequence of mouse metallothionein I and II genes. Mol Cell Biol. 1984 Jul;4(7):1221–1230. doi: 10.1128/mcb.4.7.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Searle P. F., Stuart G. W., Palmiter R. D. Metal regulatory elements of the mouse metallothionein-I gene. Experientia Suppl. 1987;52:407–414. doi: 10.1007/978-3-0348-6784-9_39. [DOI] [PubMed] [Google Scholar]
  45. Searle P. F. Zinc dependent binding of a liver nuclear factor to metal response element MRE-a of the mouse metallothionein-I gene and variant sequences. Nucleic Acids Res. 1990 Aug 25;18(16):4683–4690. doi: 10.1093/nar/18.16.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sekhar K. R., Meredith M. J., Kerr L. D., Soltaninassab S. R., Spitz D. R., Xu Z. Q., Freeman M. L. Expression of glutathione and gamma-glutamylcysteine synthetase mRNA is Jun dependent. Biochem Biophys Res Commun. 1997 May 29;234(3):588–593. doi: 10.1006/bbrc.1997.6697. [DOI] [PubMed] [Google Scholar]
  47. Sen C. K., Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996 May;10(7):709–720. doi: 10.1096/fasebj.10.7.8635688. [DOI] [PubMed] [Google Scholar]
  48. Shi Z. Z., Habib G. M., Rhead W. J., Gahl W. A., He X., Sazer S., Lieberman M. W. Mutations in the glutathione synthetase gene cause 5-oxoprolinuria. Nat Genet. 1996 Nov;14(3):361–365. doi: 10.1038/ng1196-361. [DOI] [PubMed] [Google Scholar]
  49. Shimizu M., Morita S. Effects of fasting on cadmium toxicity, glutathione metabolism, and metallothionein synthesis in rats. Toxicol Appl Pharmacol. 1990 Mar 15;103(1):28–39. doi: 10.1016/0041-008x(90)90259-w. [DOI] [PubMed] [Google Scholar]
  50. Singhal R. K., Anderson M. E., Meister A. Glutathione, a first line of defense against cadmium toxicity. FASEB J. 1987 Sep;1(3):220–223. doi: 10.1096/fasebj.1.3.2887478. [DOI] [PubMed] [Google Scholar]
  51. Srivastava R. C., Hasan S. K., Gupta J., Gupta S. Protective role of metallothionein in nickel induced oxidative damage. Biochem Mol Biol Int. 1993 Jun;30(2):261–270. [PubMed] [Google Scholar]
  52. Stuart G. W., Searle P. F., Palmiter R. D. Identification of multiple metal regulatory elements in mouse metallothionein-I promoter by assaying synthetic sequences. 1985 Oct 31-Nov 6Nature. 317(6040):828–831. doi: 10.1038/317828a0. [DOI] [PubMed] [Google Scholar]
  53. Thomas J. P., Bachowski G. J., Girotti A. W. Inhibition of cell membrane lipid peroxidation by cadmium- and zinc-metallothioneins. Biochim Biophys Acta. 1986 Dec 10;884(3):448–461. doi: 10.1016/0304-4165(86)90195-9. [DOI] [PubMed] [Google Scholar]
  54. Thornalley P. J., Vasák M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta. 1985 Jan 21;827(1):36–44. doi: 10.1016/0167-4838(85)90098-6. [DOI] [PubMed] [Google Scholar]
  55. Tomonari A., Nishio K., Kurokawa H., Arioka H., Ishida T., Fukumoto H., Fukuoka K., Nomoto T., Iwamoto Y., Heike Y. Identification of cis-acting DNA elements of the human gamma-glutamylcysteine synthetase heavy subunit gene. Biochem Biophys Res Commun. 1997 Mar 17;232(2):522–527. doi: 10.1006/bbrc.1997.6319. [DOI] [PubMed] [Google Scholar]
  56. Uchida Y., Takio K., Titani K., Ihara Y., Tomonaga M. The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein-like protein. Neuron. 1991 Aug;7(2):337–347. doi: 10.1016/0896-6273(91)90272-2. [DOI] [PubMed] [Google Scholar]
  57. Uehara Y., Minowa O., Mori C., Shiota K., Kuno J., Noda T., Kitamura N. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995 Feb 23;373(6516):702–705. doi: 10.1038/373702a0. [DOI] [PubMed] [Google Scholar]
  58. Westin G., Gerster T., Müller M. M., Schaffner G., Schaffner W. OVEC, a versatile system to study transcription in mammalian cells and cell-free extracts. Nucleic Acids Res. 1987 Sep 11;15(17):6787–6798. doi: 10.1093/nar/15.17.6787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Westin G., Schaffner W. A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J. 1988 Dec 1;7(12):3763–3770. doi: 10.1002/j.1460-2075.1988.tb03260.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wilhelm D., van Dam H., Herr I., Baumann B., Herrlich P., Angel P. Both ATF-2 and c-Jun are phosphorylated by stress-activated protein kinases in response to UV irradiation. Immunobiology. 1995 Jul;193(2-4):143–148. doi: 10.1016/S0171-2985(11)80537-1. [DOI] [PubMed] [Google Scholar]
  61. Yao K. S., Godwin A. K., Johnson S. W., Ozols R. F., O'Dwyer P. J., Hamilton T. C. Evidence for altered regulation of gamma-glutamylcysteine synthetase gene expression among cisplatin-sensitive and cisplatin-resistant human ovarian cancer cell lines. Cancer Res. 1995 Oct 1;55(19):4367–4374. [PubMed] [Google Scholar]
  62. Zheng H., Liu J., Liu Y., Klaassen C. D. Hepatocytes from metallothionein-I and II knock-out mice are sensitive to cadmium- and tert-butylhydroperoxide-induced cytotoxicity. Toxicol Lett. 1996 Oct;87(2-3):139–145. doi: 10.1016/0378-4274(96)03770-8. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES