Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jun 1;17(11):3016–3028. doi: 10.1093/emboj/17.11.3016

P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels.

A Nicke 1, H G Bäumert 1, J Rettinger 1, A Eichele 1, G Lambrecht 1, E Mutschler 1, G Schmalzing 1
PMCID: PMC1170641  PMID: 9606184

Abstract

P2X receptors are cation channels gated by extracellular ATP. The seven known P2X isoforms possess no sequence homology with other proteins. Here we studied the quaternary structure of P2X receptors by chemical cross-linking and blue native PAGE. P2X1 and P2X3 were N-terminally tagged with six histidine residues to allow for non-denaturing receptor isolation from cRNA-injected, [35S]methionine-labeled oocytes. The His-tag did not change the electrophysiological properties of the P2X1 receptor. His-P2X1 was found to carry four N-glycans per polypeptide chain, only one of which acquired Endo H resistance en route to the plasma membrane. 3, 3'-Dithiobis(sulfosuccinimidylpropionate) (DTSSP) and two of three bifunctional analogues of the P2X receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) cross-linked digitonin-solubilized His-P2X1 and His-P2X3 quantitatively to homo-trimers. Likewise, when analyzed by blue native PAGE, P2X receptors purified in digitonin or dodecyl-beta-D-maltoside migrated entirely as non-covalently linked homo-trimers, whereas the alpha2 beta gamma delta nicotinic acetylcholine receptor (used as a positive control) migrated as the expected pentamer. P2X monomers remained undetected soon after synthesis, indicating that trimerization occurred in the endoplasmic reticulum. The plasma membrane form of His-P2X1 was also identified as a homo-trimer. If n-octylglucoside was used for P2X receptor solubilization, homo-hexamers were observed, suggesting that trimers can aggregate to form larger complexes. We conclude that trimers represent an essential element of P2X receptor structure. Keywords: blue native PAGE/cross-linking/P2X receptor/quaternary structure.

Full Text

The Full Text of this article is available as a PDF (490.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbracchio M. P., Burnstock G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther. 1994;64(3):445–475. doi: 10.1016/0163-7258(94)00048-4. [DOI] [PubMed] [Google Scholar]
  2. Anand R., Conroy W. G., Schoepfer R., Whiting P., Lindstrom J. Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. J Biol Chem. 1991 Jun 15;266(17):11192–11198. [PubMed] [Google Scholar]
  3. Betz H. Ligand-gated ion channels in the brain: the amino acid receptor superfamily. Neuron. 1990 Oct;5(4):383–392. doi: 10.1016/0896-6273(90)90077-s. [DOI] [PubMed] [Google Scholar]
  4. Blount P., Sukharev S. I., Moe P. C., Schroeder M. J., Guy H. R., Kung C. Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli. EMBO J. 1996 Sep 16;15(18):4798–4805. [PMC free article] [PubMed] [Google Scholar]
  5. Bo X., Simon J., Burnstock G., Barnard E. A. Solubilization and molecular size determination of the P2x purinoceptor from rat vas deferens. J Biol Chem. 1992 Sep 5;267(25):17581–17587. [PubMed] [Google Scholar]
  6. Boess F. G., Beroukhim R., Martin I. L. Ultrastructure of the 5-hydroxytryptamine3 receptor. J Neurochem. 1995 Mar;64(3):1401–1405. doi: 10.1046/j.1471-4159.1995.64031401.x. [DOI] [PubMed] [Google Scholar]
  7. Boulay F., Doms R. W., Webster R. G., Helenius A. Posttranslational oligomerization and cooperative acid activation of mixed influenza hemagglutinin trimers. J Cell Biol. 1988 Mar;106(3):629–639. doi: 10.1083/jcb.106.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buell G., Collo G., Rassendren F. P2X receptors: an emerging channel family. Eur J Neurosci. 1996 Oct;8(10):2221–2228. doi: 10.1111/j.1460-9568.1996.tb00745.x. [DOI] [PubMed] [Google Scholar]
  9. Buell G., Lewis C., Collo G., North R. A., Surprenant A. An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J. 1996 Jan 2;15(1):55–62. [PMC free article] [PubMed] [Google Scholar]
  10. Burnashev N., Villarroel A., Sakmann B. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J Physiol. 1996 Oct 1;496(Pt 1):165–173. doi: 10.1113/jphysiol.1996.sp021674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Burnstock G. Development and perspectives of the purinoceptor concept. J Auton Pharmacol. 1996 Dec;16(6):295–302. doi: 10.1111/j.1474-8673.1996.tb00039.x. [DOI] [PubMed] [Google Scholar]
  12. Burnstock G., Wood J. N. Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr Opin Neurobiol. 1996 Aug;6(4):526–532. doi: 10.1016/s0959-4388(96)80060-2. [DOI] [PubMed] [Google Scholar]
  13. Bültmann R., Pause B., Wittenburg H., Kurz G., Starke K. P2-purinoceptor antagonists: I. Blockade of P2-purinoceptor subtypes and ecto-nucleotidases by small aromatic isothiocyanato-sulphonates. Naunyn Schmiedebergs Arch Pharmacol. 1996 Oct;354(4):481–490. doi: 10.1007/BF00168440. [DOI] [PubMed] [Google Scholar]
  14. Cake M. H., DiSorbo D. M., Litwack G. Effect of pyridoxal phosphate on the DNA binding site of activated hepatic glucocorticoid receptor. J Biol Chem. 1978 Jul 25;253(14):4886–4891. [PubMed] [Google Scholar]
  15. Chen C. C., Akopian A. N., Sivilotti L., Colquhoun D., Burnstock G., Wood J. N. A P2X purinoceptor expressed by a subset of sensory neurons. Nature. 1995 Oct 5;377(6548):428–431. doi: 10.1038/377428a0. [DOI] [PubMed] [Google Scholar]
  16. Copeland C. S., Doms R. W., Bolzau E. M., Webster R. G., Helenius A. Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J Cell Biol. 1986 Oct;103(4):1179–1191. doi: 10.1083/jcb.103.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cruickshank C. C., Minchin R. F., Le Dain A. C., Martinac B. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys J. 1997 Oct;73(4):1925–1931. doi: 10.1016/S0006-3495(97)78223-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dani J. A., Mayer M. L. Structure and function of glutamate and nicotinic acetylcholine receptors. Curr Opin Neurobiol. 1995 Jun;5(3):310–317. doi: 10.1016/0959-4388(95)80043-3. [DOI] [PubMed] [Google Scholar]
  19. Doms R. W., Helenius A. Quaternary structure of influenza virus hemagglutinin after acid treatment. J Virol. 1986 Dec;60(3):833–839. doi: 10.1128/jvi.60.3.833-839.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dwyer T. M., Adams D. J., Hille B. The permeability of the endplate channel to organic cations in frog muscle. J Gen Physiol. 1980 May;75(5):469–492. doi: 10.1085/jgp.75.5.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Evans R. J., Lewis C., Virginio C., Lundstrom K., Buell G., Surprenant A., North R. A. Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J Physiol. 1996 Dec 1;497(Pt 2):413–422. doi: 10.1113/jphysiol.1996.sp021777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ferrer-Montiel A. V., Montal M. Pentameric subunit stoichiometry of a neuronal glutamate receptor. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2741–2744. doi: 10.1073/pnas.93.7.2741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Firsov D., Gautschi I., Merillat A. M., Rossier B. C., Schild L. The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J. 1998 Jan 15;17(2):344–352. doi: 10.1093/emboj/17.2.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Garcia-Guzman M., Soto F., Gomez-Hernandez J. M., Lund P. E., Stühmer W. Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol Pharmacol. 1997 Jan;51(1):109–118. doi: 10.1124/mol.51.1.109. [DOI] [PubMed] [Google Scholar]
  25. Gloor S., Pongs O., Schmalzing G. A vector for the synthesis of cRNAs encoding Myc epitope-tagged proteins in Xenopus laevis oocytes. Gene. 1995 Jul 28;160(2):213–217. doi: 10.1016/0378-1119(95)00226-v. [DOI] [PubMed] [Google Scholar]
  26. Green W. N., Millar N. S. Ion-channel assembly. Trends Neurosci. 1995 Jun;18(6):280–287. [PubMed] [Google Scholar]
  27. Hammond C., Helenius A. Quality control in the secretory pathway. Curr Opin Cell Biol. 1995 Aug;7(4):523–529. doi: 10.1016/0955-0674(95)80009-3. [DOI] [PubMed] [Google Scholar]
  28. Hansen M. A., Barden J. A., Balcar V. J., Keay K. A., Bennett M. R. Structural motif and characteristics of the extracellular domain of P2X receptors. Biochem Biophys Res Commun. 1997 Jul 30;236(3):670–675. doi: 10.1006/bbrc.1997.6815. [DOI] [PubMed] [Google Scholar]
  29. Hollmann M., Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci. 1994;17:31–108. doi: 10.1146/annurev.ne.17.030194.000335. [DOI] [PubMed] [Google Scholar]
  30. Hucho F., Tsetlin V. I., Machold J. The emerging three-dimensional structure of a receptor. The nicotinic acetylcholine receptor. Eur J Biochem. 1996 Aug 1;239(3):539–557. doi: 10.1111/j.1432-1033.1996.0539u.x. [DOI] [PubMed] [Google Scholar]
  31. Johnston P. A., Südhof T. C. The multisubunit structure of synaptophysin. Relationship between disulfide bonding and homo-oligomerization. J Biol Chem. 1990 May 25;265(15):8869–8873. [PubMed] [Google Scholar]
  32. Kim M., Yoo O. J., Choe S. Molecular assembly of the extracellular domain of P2X2, an ATP-gated ion channel. Biochem Biophys Res Commun. 1997 Nov 26;240(3):618–622. doi: 10.1006/bbrc.1997.7713. [DOI] [PubMed] [Google Scholar]
  33. Kim P. S., Kim K. R., Arvan P. Disulfide-linked aggregation of thyroglobulin normally occurs during nascent protein folding. Am J Physiol. 1993 Sep;265(3 Pt 1):C704–C711. doi: 10.1152/ajpcell.1993.265.3.C704. [DOI] [PubMed] [Google Scholar]
  34. Kuner T., Wollmuth L. P., Karlin A., Seeburg P. H., Sakmann B. Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron. 1996 Aug;17(2):343–352. doi: 10.1016/s0896-6273(00)80165-8. [DOI] [PubMed] [Google Scholar]
  35. Lambrecht G. Design and pharmacology of selective P2-purinoceptor antagonists. J Auton Pharmacol. 1996 Dec;16(6):341–344. doi: 10.1111/j.1474-8673.1996.tb00049.x. [DOI] [PubMed] [Google Scholar]
  36. Lambrecht G., Friebe T., Grimm U., Windscheif U., Bungardt E., Hildebrandt C., Bäumert H. G., Spatz-Kümbel G., Mutschler E. PPADS, a novel functionally selective antagonist of P2 purinoceptor-mediated responses. Eur J Pharmacol. 1992 Jul 7;217(2-3):217–219. doi: 10.1016/0014-2999(92)90877-7. [DOI] [PubMed] [Google Scholar]
  37. Langosch D., Thomas L., Betz H. Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7394–7398. doi: 10.1073/pnas.85.19.7394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Laube B., Kuhse J., Betz H. Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci. 1998 Apr 15;18(8):2954–2961. doi: 10.1523/JNEUROSCI.18-08-02954.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lewis C., Neidhart S., Holy C., North R. A., Buell G., Surprenant A. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature. 1995 Oct 5;377(6548):432–435. doi: 10.1038/377432a0. [DOI] [PubMed] [Google Scholar]
  40. Lingueglia E., Champigny G., Lazdunski M., Barbry P. Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature. 1995 Dec 14;378(6558):730–733. doi: 10.1038/378730a0. [DOI] [PubMed] [Google Scholar]
  41. Lutter L. C., Ortanderl F., Fasold H. The use of a new series of cleavable protein-crosslinkers on the Escherichia coli ribosome. FEBS Lett. 1974 Nov 15;48(2):288–292. doi: 10.1016/0014-5793(74)80488-6. [DOI] [PubMed] [Google Scholar]
  42. Mano I., Teichberg V. I. A tetrameric subunit stoichiometry for a glutamate receptor-channel complex. Neuroreport. 1998 Jan 26;9(2):327–331. doi: 10.1097/00001756-199801260-00027. [DOI] [PubMed] [Google Scholar]
  43. Montal M. Protein folds in channel structure. Curr Opin Struct Biol. 1996 Aug;6(4):499–510. doi: 10.1016/s0959-440x(96)80115-1. [DOI] [PubMed] [Google Scholar]
  44. Nayeem N., Green T. P., Martin I. L., Barnard E. A. Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis. J Neurochem. 1994 Feb;62(2):815–818. doi: 10.1046/j.1471-4159.1994.62020815.x. [DOI] [PubMed] [Google Scholar]
  45. North R. A. Families of ion channels with two hydrophobic segments. Curr Opin Cell Biol. 1996 Aug;8(4):474–483. doi: 10.1016/s0955-0674(96)80023-8. [DOI] [PubMed] [Google Scholar]
  46. North R. A. P2X receptors: a third major class of ligand-gated ion channels. Ciba Found Symp. 1996;198:91–109. doi: 10.1002/9780470514900.ch5. [DOI] [PubMed] [Google Scholar]
  47. Ortells M. O., Lunt G. G. Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci. 1995 Mar;18(3):121–127. doi: 10.1016/0166-2236(95)93887-4. [DOI] [PubMed] [Google Scholar]
  48. Portoghese P. S. Bivalent ligands and the message-address concept in the design of selective opioid receptor antagonists. Trends Pharmacol Sci. 1989 Jun;10(6):230–235. doi: 10.1016/0165-6147(89)90267-8. [DOI] [PubMed] [Google Scholar]
  49. Rassendren F., Buell G. N., Virginio C., Collo G., North R. A., Surprenant A. The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J Biol Chem. 1997 Feb 28;272(9):5482–5486. doi: 10.1074/jbc.272.9.5482. [DOI] [PubMed] [Google Scholar]
  50. Rassendren F., Buell G., Newbolt A., North R. A., Surprenant A. Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J. 1997 Jun 16;16(12):3446–3454. doi: 10.1093/emboj/16.12.3446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Rossier B. C., Canessa C. M., Schild L., Horisberger J. D. Epithelial sodium channels. Curr Opin Nephrol Hypertens. 1994 Sep;3(5):487–496. doi: 10.1097/00041552-199409000-00003. [DOI] [PubMed] [Google Scholar]
  52. Schmalzing G., Kröner S., Passow H. Evidence for intracellular sodium pumps in permeabilized Xenopus laevis oocytes. Biochem J. 1989 Jun 1;260(2):395–399. doi: 10.1042/bj2600395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Schmalzing G., Kröner S., Schachner M., Gloor S. The adhesion molecule on glia (AMOG/beta 2) and alpha 1 subunits assemble to functional sodium pumps in Xenopus oocytes. J Biol Chem. 1992 Oct 5;267(28):20212–20216. [PubMed] [Google Scholar]
  54. Schmalzing G., Ruhl K., Gloor S. M. Isoform-specific interactions of Na,K-ATPase subunits are mediated via extracellular domains and carbohydrates. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1136–1141. doi: 10.1073/pnas.94.4.1136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Schrempf H., Schmidt O., Kümmerlen R., Hinnah S., Müller D., Betzler M., Steinkamp T., Wagner R. A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J. 1995 Nov 1;14(21):5170–5178. doi: 10.1002/j.1460-2075.1995.tb00201.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Schägger H., Cramer W. A., von Jagow G. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem. 1994 Mar;217(2):220–230. doi: 10.1006/abio.1994.1112. [DOI] [PubMed] [Google Scholar]
  57. Schägger H., von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem. 1991 Dec;199(2):223–231. doi: 10.1016/0003-2697(91)90094-a. [DOI] [PubMed] [Google Scholar]
  58. Snyder P. M., Cheng C., Prince L. S., Rogers J. C., Welsh M. J. Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J Biol Chem. 1998 Jan 9;273(2):681–684. doi: 10.1074/jbc.273.2.681. [DOI] [PubMed] [Google Scholar]
  59. Surprenant A., Rassendren F., Kawashima E., North R. A., Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science. 1996 May 3;272(5262):735–738. doi: 10.1126/science.272.5262.735. [DOI] [PubMed] [Google Scholar]
  60. Tatu U., Braakman I., Helenius A. Membrane glycoprotein folding, oligomerization and intracellular transport: effects of dithiothreitol in living cells. EMBO J. 1993 May;12(5):2151–2157. doi: 10.1002/j.1460-2075.1993.tb05863.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Thomas L., Hartung K., Langosch D., Rehm H., Bamberg E., Franke W. W., Betz H. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science. 1988 Nov 18;242(4881):1050–1053. doi: 10.1126/science.2461586. [DOI] [PubMed] [Google Scholar]
  62. Thompson J. A., Lau A. L., Cunningham D. D. Selective radiolabeling of cell surface proteins to a high specific activity. Biochemistry. 1987 Feb 10;26(3):743–750. doi: 10.1021/bi00377a014. [DOI] [PubMed] [Google Scholar]
  63. Unwin N. Acetylcholine receptor channel imaged in the open state. Nature. 1995 Jan 5;373(6509):37–43. doi: 10.1038/373037a0. [DOI] [PubMed] [Google Scholar]
  64. Valera S., Hussy N., Evans R. J., Adami N., North R. A., Surprenant A., Buell G. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature. 1994 Oct 6;371(6497):516–519. doi: 10.1038/371516a0. [DOI] [PubMed] [Google Scholar]
  65. Valera S., Talabot F., Evans R. J., Gos A., Antonarakis S. E., Morris M. A., Buell G. N. Characterization and chromosomal localization of a human P2X receptor from the urinary bladder. Receptors Channels. 1995;3(4):283–289. [PubMed] [Google Scholar]
  66. Villarroel A., Burnashev N., Sakmann B. Dimensions of the narrow portion of a recombinant NMDA receptor channel. Biophys J. 1995 Mar;68(3):866–875. doi: 10.1016/S0006-3495(95)80263-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Watty A., Methfessel C., Hucho F. Fixation of allosteric states of the nicotinic acetylcholine receptor by chemical cross-linking. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8202–8207. doi: 10.1073/pnas.94.15.8202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Witzemann V., Stein E., Barg B., Konno T., Koenen M., Kues W., Criado M., Hofmann M., Sakmann B. Primary structure and functional expression of the alpha-, beta-, gamma-, delta- and epsilon-subunits of the acetylcholine receptor from rat muscle. Eur J Biochem. 1990 Dec 12;194(2):437–448. doi: 10.1111/j.1432-1033.1990.tb15637.x. [DOI] [PubMed] [Google Scholar]
  69. Yang J., Jan Y. N., Jan L. Y. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron. 1995 Dec;15(6):1441–1447. doi: 10.1016/0896-6273(95)90021-7. [DOI] [PubMed] [Google Scholar]
  70. Yeager M., Nicholson B. J. Structure of gap junction intercellular channels. Curr Opin Struct Biol. 1996 Apr;6(2):183–192. doi: 10.1016/s0959-440x(96)80073-x. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES