Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jun 15;17(12):3219–3232. doi: 10.1093/emboj/17.12.3219

Crystal structures of Toxoplasma gondii uracil phosphoribosyltransferase reveal the atomic basis of pyrimidine discrimination and prodrug binding.

M A Schumacher 1, D Carter 1, D M Scott 1, D S Roos 1, B Ullman 1, R G Brennan 1
PMCID: PMC1170660  PMID: 9628859

Abstract

Uracil phosphoribosyltransferase (UPRTase) catalyzes the transfer of a ribosyl phosphate group from alpha-D-5-phosphoribosyl-1-pyrophosphate to the N1 nitrogen of uracil. The UPRTase from the opportunistic pathogen Toxoplasma gondii is a rational target for antiparasitic drug design. To aid in structure-based drug design studies against toxoplasmosis, the crystal structures of the T.gondii apo UPRTase (1.93 A resolution), the UPRTase bound to its substrate, uracil (2.2 A resolution), its product, UMP (2.5 A resolution), and the prodrug, 5-fluorouracil (2.3 A resolution), have been determined. These structures reveal that UPRTase recognizes uracil through polypeptide backbone hydrogen bonds to the uracil exocyclic O2 and endocyclic N3 atoms and a backbone-water-exocyclic O4 oxygen hydrogen bond. This stereochemical arrangement and the architecture of the uracil-binding pocket reveal why cytosine and pyrimidines with exocyclic substituents at ring position 5 larger than fluorine, including thymine, cannot bind to the enzyme. Strikingly, the T. gondii UPRTase contains a 22 residue insertion within the conserved PRTase fold that forms an extended antiparallel beta-arm. Leu92, at the tip of this arm, functions to cap the active site of its dimer mate, thereby inhibiting the escape of the substrate-binding water molecule.

Full Text

The Full Text of this article is available as a PDF (948.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argos P., Hanei M., Wilson J. M., Kelley W. N. A possible nucleotide-binding domain in the tertiary fold of phosphoribosyltransferases. J Biol Chem. 1983 May 25;258(10):6450–6457. [PubMed] [Google Scholar]
  2. Asai T., Lee C. S., Chandler A., O'Sullivan W. J. Purification and characterization of uracil phosphoribosyltransferase from Crithidia luciliae. Comp Biochem Physiol B. 1990;95(1):159–163. doi: 10.1016/0305-0491(90)90264-t. [DOI] [PubMed] [Google Scholar]
  3. Carter D., Donald R. G., Roos D., Ullman B. Expression, purification, and characterization of uracil phosphoribosyltransferase from Toxoplasma gondii. Mol Biochem Parasitol. 1997 Aug;87(2):137–144. doi: 10.1016/s0166-6851(97)00058-3. [DOI] [PubMed] [Google Scholar]
  4. Donald R. G., Roos D. S. Insertional mutagenesis and marker rescue in a protozoan parasite: cloning of the uracil phosphoribosyltransferase locus from Toxoplasma gondii. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5749–5753. doi: 10.1073/pnas.92.12.5749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eads J. C., Ozturk D., Wexler T. B., Grubmeyer C., Sacchettini J. C. A new function for a common fold: the crystal structure of quinolinic acid phosphoribosyltransferase. Structure. 1997 Jan 15;5(1):47–58. doi: 10.1016/s0969-2126(97)00165-2. [DOI] [PubMed] [Google Scholar]
  6. Eads J. C., Scapin G., Xu Y., Grubmeyer C., Sacchettini J. C. The crystal structure of human hypoxanthine-guanine phosphoribosyltransferase with bound GMP. Cell. 1994 Jul 29;78(2):325–334. doi: 10.1016/0092-8674(94)90301-8. [DOI] [PubMed] [Google Scholar]
  7. Goitein R. K., Chelsky D., Parsons S. M. Primary 14C and alpha secondary 3H substrate kinetic isotope effects for some phosphoribosyltransferases. J Biol Chem. 1978 May 10;253(9):2963–2971. [PubMed] [Google Scholar]
  8. Henriksen A., Aghajari N., Jensen K. F., Gajhede M. A flexible loop at the dimer interface is a part of the active site of the adjacent monomer of Escherichia coli orotate phosphoribosyltransferase. Biochemistry. 1996 Mar 26;35(12):3803–3809. doi: 10.1021/bi952226y. [DOI] [PubMed] [Google Scholar]
  9. Hosaka H., Nakagawa A., Tanaka I., Harada N., Sano K., Kimura M., Yao M., Wakatsuki S. Ribosomal protein S7: a new RNA-binding motif with structural similarities to a DNA architectural factor. Structure. 1997 Sep 15;5(9):1199–1208. doi: 10.1016/s0969-2126(97)00270-0. [DOI] [PubMed] [Google Scholar]
  10. Iltzsch M. H., Tankersley K. O. Structure-activity relationship of ligands of uracil phosphoribosyltransferase from Toxoplasma gondii. Biochem Pharmacol. 1994 Aug 17;48(4):781–792. doi: 10.1016/0006-2952(94)90057-4. [DOI] [PubMed] [Google Scholar]
  11. Jardim A., Ullman B. The conserved serine-tyrosine dipeptide in Leishmania donovani hypoxanthine-guanine phosphoribosyltransferase is essential for catalytic activity. J Biol Chem. 1997 Apr 4;272(14):8967–8973. doi: 10.1074/jbc.272.14.8967. [DOI] [PubMed] [Google Scholar]
  12. Joachimiak A., Haran T. E., Sigler P. B. Mutagenesis supports water mediated recognition in the trp repressor-operator system. EMBO J. 1994 Jan 15;13(2):367–372. doi: 10.1002/j.1460-2075.1994.tb06270.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
  14. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  15. Krahn J. M., Kim J. H., Burns M. R., Parry R. J., Zalkin H., Smith J. L. Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site. Biochemistry. 1997 Sep 16;36(37):11061–11068. doi: 10.1021/bi9714114. [DOI] [PubMed] [Google Scholar]
  16. Luft B. J., Remington J. S. Toxoplasmic encephalitis in AIDS. Clin Infect Dis. 1992 Aug;15(2):211–222. doi: 10.1093/clinids/15.2.211. [DOI] [PubMed] [Google Scholar]
  17. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  18. McIvor R. S., Wohlhueter R. M., Plagemann P. G. Uracil phosphoribosyltransferase from Acholeplasma laidlawii: partial purification and kinetic properties. J Bacteriol. 1983 Oct;156(1):192–197. doi: 10.1128/jb.156.1.192-197.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Muchmore C. R., Krahn J. M., Kim J. H., Zalkin H., Smith J. L. Crystal structure of glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli. Protein Sci. 1998 Jan;7(1):39–51. doi: 10.1002/pro.5560070104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Musick W. D. Structural features of the phosphoribosyltransferases and their relationship to the human deficiency disorders of purine and pyrimidine metabolism. CRC Crit Rev Biochem. 1981;11(1):1–34. doi: 10.3109/10409238109108698. [DOI] [PubMed] [Google Scholar]
  21. Natalini P., Ruggieri S., Santarelli I., Vita A., Magni G. Baker's yeast UMP:pyrophosphate phosphoribosyltransferase. Purification, enzymatic and kinetic properties. J Biol Chem. 1979 Mar 10;254(5):1558–1563. [PubMed] [Google Scholar]
  22. Newman M., Safro M., Frazao C., Khan G., Zdanov A., Tickle I. J., Blundell T. L., Andreeva N. X-ray analyses of aspartic proteinases. IV. Structure and refinement at 2.2 A resolution of bovine chymosin. J Mol Biol. 1991 Oct 20;221(4):1295–1309. [PubMed] [Google Scholar]
  23. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  24. Otwinowski Z., Schevitz R. W., Zhang R. G., Lawson C. L., Joachimiak A., Marmorstein R. Q., Luisi B. F., Sigler P. B. Crystal structure of trp repressor/operator complex at atomic resolution. Nature. 1988 Sep 22;335(6188):321–329. doi: 10.1038/335321a0. [DOI] [PubMed] [Google Scholar]
  25. Ozturk D. H., Dorfman R. H., Scapin G., Sacchettini J. C., Grubmeyer C. Structure and function of Salmonella typhimurium orotate phosphoribosyltransferase: protein complementation reveals shared active sites. Biochemistry. 1995 Aug 29;34(34):10764–10770. doi: 10.1021/bi00034a008. [DOI] [PubMed] [Google Scholar]
  26. Pfefferkorn E. R., Eckel M. E., McAdams E. Toxoplasma gondii: the biochemical basis of resistance to emimycin. Exp Parasitol. 1989 Aug;69(2):129–139. doi: 10.1016/0014-4894(89)90181-1. [DOI] [PubMed] [Google Scholar]
  27. Pfefferkorn E. R., Pfefferkorn L. C. Toxoplasma gondii: characterization of a mutant resistant to 5-fluorodeoxyuridine. Exp Parasitol. 1977 Jun;42(1):44–55. doi: 10.1016/0014-4894(77)90060-1. [DOI] [PubMed] [Google Scholar]
  28. Rasmussen U. B., Mygind B., Nygaard P. Purification and some properties of uracil phosphoribosyltransferase from Escherichia coli K12. Biochim Biophys Acta. 1986 Apr 11;881(2):268–275. doi: 10.1016/0304-4165(86)90013-9. [DOI] [PubMed] [Google Scholar]
  29. Rice P. A., Yang S., Mizuuchi K., Nash H. A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell. 1996 Dec 27;87(7):1295–1306. doi: 10.1016/s0092-8674(00)81824-3. [DOI] [PubMed] [Google Scholar]
  30. Safo M. K., Yang W. Z., Corselli L., Cramton S. E., Yuan H. S., Johnson R. C. The transactivation region of the fis protein that controls site-specific DNA inversion contains extended mobile beta-hairpin arms. EMBO J. 1997 Nov 17;16(22):6860–6873. doi: 10.1093/emboj/16.22.6860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Scapin G., Ozturk D. H., Grubmeyer C., Sacchettini J. C. The crystal structure of the orotate phosphoribosyltransferase complexed with orotate and alpha-D-5-phosphoribosyl-1-pyrophosphate. Biochemistry. 1995 Aug 29;34(34):10744–10754. doi: 10.1021/bi00034a006. [DOI] [PubMed] [Google Scholar]
  32. Schumacher M. A., Carter D., Roos D. S., Ullman B., Brennan R. G. Crystal structures of Toxoplasma gondii HGXPRTase reveal the catalytic role of a long flexible loop. Nat Struct Biol. 1996 Oct;3(10):881–887. doi: 10.1038/nsb1096-881. [DOI] [PubMed] [Google Scholar]
  33. Schumacher M. A., Glasfeld A., Zalkin H., Brennan R. G. The X-ray structure of the PurR-guanine-purF operator complex reveals the contributions of complementary electrostatic surfaces and a water-mediated hydrogen bond to corepressor specificity and binding affinity. J Biol Chem. 1997 Sep 5;272(36):22648–22653. doi: 10.1074/jbc.272.36.22648. [DOI] [PubMed] [Google Scholar]
  34. Schwartzman J. D., Pfefferkorn E. R. Pyrimidine synthesis by intracellular Toxoplasma gondii. J Parasitol. 1981 Apr;67(2):150–158. [PubMed] [Google Scholar]
  35. Smith J. L. Enzymes of nucleotide synthesis. Curr Opin Struct Biol. 1995 Dec;5(6):752–757. doi: 10.1016/0959-440x(95)80007-7. [DOI] [PubMed] [Google Scholar]
  36. Smith J. L., Zaluzec E. J., Wery J. P., Niu L., Switzer R. L., Zalkin H., Satow Y. Structure of the allosteric regulatory enzyme of purine biosynthesis. Science. 1994 Jun 3;264(5164):1427–1433. doi: 10.1126/science.8197456. [DOI] [PubMed] [Google Scholar]
  37. Somoza J. R., Chin M. S., Focia P. J., Wang C. C., Fletterick R. J. Crystal structure of the hypoxanthine-guanine-xanthine phosphoribosyltransferase from the protozoan parasite Tritrichomonas foetus. Biochemistry. 1996 Jun 4;35(22):7032–7040. doi: 10.1021/bi953072p. [DOI] [PubMed] [Google Scholar]
  38. Stewart D. E., Sarkar A., Wampler J. E. Occurrence and role of cis peptide bonds in protein structures. J Mol Biol. 1990 Jul 5;214(1):253–260. doi: 10.1016/0022-2836(90)90159-J. [DOI] [PubMed] [Google Scholar]
  39. Tanaka I., Appelt K., Dijk J., White S. W., Wilson K. S. 3-A resolution structure of a protein with histone-like properties in prokaryotes. Nature. 1984 Aug 2;310(5976):376–381. doi: 10.1038/310376a0. [DOI] [PubMed] [Google Scholar]
  40. Tao W., Grubmeyer C., Blanchard J. S. Transition state structure of Salmonella typhimurium orotate phosphoribosyltransferase. Biochemistry. 1996 Jan 9;35(1):14–21. doi: 10.1021/bi951898l. [DOI] [PubMed] [Google Scholar]
  41. Vis H., Mariani M., Vorgias C. E., Wilson K. S., Kaptein R., Boelens R. Solution structure of the HU protein from Bacillus stearothermophilus. J Mol Biol. 1995 Dec 8;254(4):692–703. doi: 10.1006/jmbi.1995.0648. [DOI] [PubMed] [Google Scholar]
  42. Vos S., de Jersey J., Martin J. L. Crystal structure of Escherichia coli xanthine phosphoribosyltransferase. Biochemistry. 1997 Apr 8;36(14):4125–4134. doi: 10.1021/bi962640d. [DOI] [PubMed] [Google Scholar]
  43. Weiss M. S., Metzner H. J., Hilgenfeld R. Two non-proline cis peptide bonds may be important for factor XIII function. FEBS Lett. 1998 Feb 27;423(3):291–296. doi: 10.1016/s0014-5793(98)00098-2. [DOI] [PubMed] [Google Scholar]
  44. Wimberly B. T., White S. W., Ramakrishnan V. The structure of ribosomal protein S7 at 1.9 A resolution reveals a beta-hairpin motif that binds double-stranded nucleic acids. Structure. 1997 Sep 15;5(9):1187–1198. doi: 10.1016/s0969-2126(97)00269-4. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES