Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jun 15;17(12):3241–3250. doi: 10.1093/emboj/17.12.3241

UBPY: a growth-regulated human ubiquitin isopeptidase.

S Naviglio 1, C Mattecucci 1, B Matoskova 1, T Nagase 1, N Nomura 1, P P Di Fiore 1, G F Draetta 1
PMCID: PMC1170662  PMID: 9628861

Abstract

The ubiquitin pathway has been implicated in the regulation of the abundance of proteins that control cell growth and proliferation. We have identified and characterized a novel human ubiquitin isopeptidase, UBPY, which both as a recombinant protein and upon immunoprecipitation from cell extracts is able to cleave linear or isopeptide-linked ubiquitin chains. UBPY accumulates upon growth stimulation of starved human fibroblasts, and its levels decrease in response to growth arrest induced by cell-cell contact. Inhibition of UBPY accumulation by antisense plasmid microinjection prevents fibroblasts from entering S-phase in response to serum stimulation. By increasing or decreasing the cellular abundance of UBPY or by overexpressing a catalytic site mutant, we detect substantial changes in the total pattern of protein ubiquitination, which correlate stringently with cell proliferation. Our results suggest that UBPY plays a role in regulating the overall function of the ubiquitin-proteasome pathway. Affecting the function of a specific UBP in vivo could provide novel tools for controlling mammalian cell proliferation.

Full Text

The Full Text of this article is available as a PDF (509.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker R. T., Tobias J. W., Varshavsky A. Ubiquitin-specific proteases of Saccharomyces cerevisiae. Cloning of UBP2 and UBP3, and functional analysis of the UBP gene family. J Biol Chem. 1992 Nov 15;267(32):23364–23375. [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell. 1994 Oct 7;79(1):13–21. doi: 10.1016/0092-8674(94)90396-4. [DOI] [PubMed] [Google Scholar]
  4. Diehl J. A., Zindy F., Sherr C. J. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 1997 Apr 15;11(8):957–972. doi: 10.1101/gad.11.8.957. [DOI] [PubMed] [Google Scholar]
  5. Ellison M. J., Hochstrasser M. Epitope-tagged ubiquitin. A new probe for analyzing ubiquitin function. J Biol Chem. 1991 Nov 5;266(31):21150–21157. [PubMed] [Google Scholar]
  6. Everett R. D., Meredith M., Orr A., Cross A., Kathoria M., Parkinson J. A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J. 1997 Apr 1;16(7):1519–1530. doi: 10.1093/emboj/16.7.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Falquet L., Paquet N., Frutiger S., Hughes G. J., Hoang-Van K., Jaton J. C. A human de-ubiquitinating enzyme with both isopeptidase and peptidase activities in vitro. FEBS Lett. 1995 Feb 6;359(1):73–77. doi: 10.1016/0014-5793(94)01451-6. [DOI] [PubMed] [Google Scholar]
  8. Falquet L., Paquet N., Frutiger S., Hughes G. J., Hoang-Van K., Jaton J. C. cDNA cloning of a human 100 kDa de-ubiquitinating enzyme: the 100 kDa human de-ubiquitinase belongs to the ubiquitin C-terminal hydrolase family 2 (UCH2). FEBS Lett. 1995 Dec 4;376(3):233–237. doi: 10.1016/0014-5793(95)01287-7. [DOI] [PubMed] [Google Scholar]
  9. Fischer-Vize J. A., Rubin G. M., Lehmann R. The fat facets gene is required for Drosophila eye and embryo development. Development. 1992 Dec;116(4):985–1000. doi: 10.1242/dev.116.4.985. [DOI] [PubMed] [Google Scholar]
  10. Goldberg A. L. Functions of the proteasome: the lysis at the end of the tunnel. Science. 1995 Apr 28;268(5210):522–523. doi: 10.1126/science.7725095. [DOI] [PubMed] [Google Scholar]
  11. Gray D. A., Inazawa J., Gupta K., Wong A., Ueda R., Takahashi T. Elevated expression of Unph, a proto-oncogene at 3p21.3, in human lung tumors. Oncogene. 1995 Jun 1;10(11):2179–2183. [PubMed] [Google Scholar]
  12. Guadagno T. M., Ohtsubo M., Roberts J. M., Assoian R. K. A link between cyclin A expression and adhesion-dependent cell cycle progression. Science. 1993 Dec 3;262(5139):1572–1575. doi: 10.1126/science.8248807. [DOI] [PubMed] [Google Scholar]
  13. Gupta K., Chevrette M., Gray D. A. The Unp proto-oncogene encodes a nuclear protein. Oncogene. 1994 Jun;9(6):1729–1731. [PubMed] [Google Scholar]
  14. Gupta K., Copeland N. G., Gilbert D. J., Jenkins N. A., Gray D. A. Unp, a mouse gene related to the tre oncogene. Oncogene. 1993 Aug;8(8):2307–2310. [PubMed] [Google Scholar]
  15. Hateboer G., Kerkhoven R. M., Shvarts A., Bernards R., Beijersbergen R. L. Degradation of E2F by the ubiquitin-proteasome pathway: regulation by retinoblastoma family proteins and adenovirus transforming proteins. Genes Dev. 1996 Dec 1;10(23):2960–2970. doi: 10.1101/gad.10.23.2960. [DOI] [PubMed] [Google Scholar]
  16. Henchoz S., De Rubertis F., Pauli D., Spierer P. The dose of a putative ubiquitin-specific protease affects position-effect variegation in Drosophila melanogaster. Mol Cell Biol. 1996 Oct;16(10):5717–5725. doi: 10.1128/mcb.16.10.5717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hochstrasser M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol. 1995 Apr;7(2):215–223. doi: 10.1016/0955-0674(95)80031-x. [DOI] [PubMed] [Google Scholar]
  18. Huang Y., Baker R. T., Fischer-Vize J. A. Control of cell fate by a deubiquitinating enzyme encoded by the fat facets gene. Science. 1995 Dec 15;270(5243):1828–1831. doi: 10.1126/science.270.5243.1828. [DOI] [PubMed] [Google Scholar]
  19. Huebner K., Cannizzaro L. A., Nakamura T., Hillova J., Mariage-Samson R., Hecht F., Hill M., Croce C. M. A rearranged transforming gene, tre, is made up of human sequences derived from chromosome regions 5q, 17q and 18q. Oncogene. 1988 Oct;3(4):449–455. [PubMed] [Google Scholar]
  20. Jaster R., Zhu Y., Pless M., Bhattacharya S., Mathey-Prevot B., D'Andrea A. D. JAK2 is required for induction of the murine DUB-1 gene. Mol Cell Biol. 1997 Jun;17(6):3364–3372. doi: 10.1128/mcb.17.6.3364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jonnalagadda S., Butt T. R., Marsh J., Sternberg E. J., Mirabelli C. K., Ecker D. J., Crooke S. T. Expression and accurate processing of yeast penta-ubiquitin in Escherichia coli. J Biol Chem. 1987 Dec 25;262(36):17750–17756. [PubMed] [Google Scholar]
  22. Kalderon D. Protein degradation: de-ubiquitinate to decide your fate. Curr Biol. 1996 Jun 1;6(6):662–665. doi: 10.1016/s0960-9822(09)00443-6. [DOI] [PubMed] [Google Scholar]
  23. Kumar S., Kao W. H., Howley P. M. Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity. J Biol Chem. 1997 May 23;272(21):13548–13554. doi: 10.1074/jbc.272.21.13548. [DOI] [PubMed] [Google Scholar]
  24. Moazed D., Johnson D. A deubiquitinating enzyme interacts with SIR4 and regulates silencing in S. cerevisiae. Cell. 1996 Aug 23;86(4):667–677. doi: 10.1016/s0092-8674(00)80139-7. [DOI] [PubMed] [Google Scholar]
  25. Müller H., Moroni M. C., Vigo E., Petersen B. O., Bartek J., Helin K. Induction of S-phase entry by E2F transcription factors depends on their nuclear localization. Mol Cell Biol. 1997 Sep;17(9):5508–5520. doi: 10.1128/mcb.17.9.5508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nakamura T., Hillova J., Mariage-Samson R., Hill M. Molecular cloning of a novel oncogene generated by DNA recombination during transfection. Oncogene Res. 1988 May;2(4):357–370. [PubMed] [Google Scholar]
  27. Nakamura T., Hillova J., Mariage-Samson R., Onno M., Huebner K., Cannizzaro L. A., Boghosian-Sell L., Croce C. M., Hill M. A novel transcriptional unit of the tre oncogene widely expressed in human cancer cells. Oncogene. 1992 Apr;7(4):733–741. [PubMed] [Google Scholar]
  28. Nomura N., Nagase T., Miyajima N., Sazuka T., Tanaka A., Sato S., Seki N., Kawarabayasi Y., Ishikawa K., Tabata S. Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 1994;1(5):223–229. doi: 10.1093/dnares/1.5.223. [DOI] [PubMed] [Google Scholar]
  29. Pagano M. Cell cycle regulation by the ubiquitin pathway. FASEB J. 1997 Nov;11(13):1067–1075. doi: 10.1096/fasebj.11.13.9367342. [DOI] [PubMed] [Google Scholar]
  30. Pagano M., Tam S. W., Theodoras A. M., Beer-Romero P., Del Sal G., Chau V., Yew P. R., Draetta G. F., Rolfe M. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science. 1995 Aug 4;269(5224):682–685. doi: 10.1126/science.7624798. [DOI] [PubMed] [Google Scholar]
  31. Pagano M., Theodoras A. M., Tam S. W., Draetta G. F. Cyclin D1-mediated inhibition of repair and replicative DNA synthesis in human fibroblasts. Genes Dev. 1994 Jul 15;8(14):1627–1639. doi: 10.1101/gad.8.14.1627. [DOI] [PubMed] [Google Scholar]
  32. Papa F. R., Hochstrasser M. The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene. Nature. 1993 Nov 25;366(6453):313–319. doi: 10.1038/366313a0. [DOI] [PubMed] [Google Scholar]
  33. Rolfe M., Chiu M. I., Pagano M. The ubiquitin-mediated proteolytic pathway as a therapeutic area. J Mol Med (Berl) 1997 Jan;75(1):5–17. doi: 10.1007/s001090050081. [DOI] [PubMed] [Google Scholar]
  34. Sherr C. J., Roberts J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995 May 15;9(10):1149–1163. doi: 10.1101/gad.9.10.1149. [DOI] [PubMed] [Google Scholar]
  35. Swanson D. A., Freund C. L., Ploder L., McInnes R. R., Valle D. A ubiquitin C-terminal hydrolase gene on the proximal short arm of the X chromosome: implications for X-linked retinal disorders. Hum Mol Genet. 1996 Apr;5(4):533–538. doi: 10.1093/hmg/5.4.533. [DOI] [PubMed] [Google Scholar]
  36. Treier M., Staszewski L. M., Bohmann D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell. 1994 Sep 9;78(5):787–798. doi: 10.1016/s0092-8674(94)90502-9. [DOI] [PubMed] [Google Scholar]
  37. Wilkinson K. D. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 1997 Dec;11(14):1245–1256. doi: 10.1096/fasebj.11.14.9409543. [DOI] [PubMed] [Google Scholar]
  38. Wilkinson K. D., Tashayev V. L., O'Connor L. B., Larsen C. N., Kasperek E., Pickart C. M. Metabolism of the polyubiquitin degradation signal: structure, mechanism, and role of isopeptidase T. Biochemistry. 1995 Nov 7;34(44):14535–14546. doi: 10.1021/bi00044a032. [DOI] [PubMed] [Google Scholar]
  39. Zhu Y., Lambert K., Corless C., Copeland N. G., Gilbert D. J., Jenkins N. A., D'Andrea A. D. DUB-2 is a member of a novel family of cytokine-inducible deubiquitinating enzymes. J Biol Chem. 1997 Jan 3;272(1):51–57. doi: 10.1074/jbc.272.1.51. [DOI] [PubMed] [Google Scholar]
  40. Zhu Y., Pless M., Inhorn R., Mathey-Prevot B., D'Andrea A. D. The murine DUB-1 gene is specifically induced by the betac subunit of interleukin-3 receptor. Mol Cell Biol. 1996 Sep;16(9):4808–4817. doi: 10.1128/mcb.16.9.4808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. van den Heuvel S., Harlow E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science. 1993 Dec 24;262(5142):2050–2054. doi: 10.1126/science.8266103. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES