Abstract
The caudal gene codes for a homeodomain transcription factor that is required for normal posterior development in Drosophila. In this study the biological activities of the Xenopus caudal (Cdx) family member Xcad3 are examined. A series of domain-swapping experiments demonstrate that the N-terminus of Xcad3 is necessary for it to activate Hox gene expression and that this function can be replaced by the activation domain from the viral protein VP16. In addition, experiments using an Xcad3 repressor mutant (XcadEn-R), which potently blocks the activity of wild-type Xcad3, are reported. Overexpression of XcadEn-R in embryos inhibits the activation of the same subset of Hox genes that are activated by wild-type Xcad3 and leads to a dramatic disruption of posterior development. We show that Xcad3 is an immediate early target of the FGF signalling pathway and that Xcad3 posteriorizes anterior neural tissue in a similar way to FGF. Furthermore, Xcad3 is required for the activation of Hox genes by FGFs. These data provide strong evidence that Xcad3 is required for normal posterior development and that it regulates the expression of the Hox genes downstream of FGF signalling.
Full Text
The Full Text of this article is available as a PDF (624.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amaya E., Stein P. A., Musci T. J., Kirschner M. W. FGF signalling in the early specification of mesoderm in Xenopus. Development. 1993 Jun;118(2):477–487. doi: 10.1242/dev.118.2.477. [DOI] [PubMed] [Google Scholar]
- Ang S. L., Jin O., Rhinn M., Daigle N., Stevenson L., Rossant J. A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development. 1996 Jan;122(1):243–252. doi: 10.1242/dev.122.1.243. [DOI] [PubMed] [Google Scholar]
- Balak K., Jacobson M., Sunshine J., Rutishauser U. Neural cell adhesion molecule expression in Xenopus embryos. Dev Biol. 1987 Feb;119(2):540–550. doi: 10.1016/0012-1606(87)90057-1. [DOI] [PubMed] [Google Scholar]
- Blum M., Gaunt S. J., Cho K. W., Steinbeisser H., Blumberg B., Bittner D., De Robertis E. M. Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell. 1992 Jun 26;69(7):1097–1106. doi: 10.1016/0092-8674(92)90632-m. [DOI] [PubMed] [Google Scholar]
- Castelli-Gair J., Greig S., Micklem G., Akam M. Dissecting the temporal requirements for homeotic gene function. Development. 1994 Jul;120(7):1983–1995. doi: 10.1242/dev.120.7.1983. [DOI] [PubMed] [Google Scholar]
- Chawengsaksophak K., James R., Hammond V. E., Köntgen F., Beck F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature. 1997 Mar 6;386(6620):84–87. doi: 10.1038/386084a0. [DOI] [PubMed] [Google Scholar]
- Condie B. G., Harland R. M. Posterior expression of a homeobox gene in early Xenopus embryos. Development. 1987 Sep;101(1):93–105. [PubMed] [Google Scholar]
- Conlon F. L., Sedgwick S. G., Weston K. M., Smith J. C. Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm. Development. 1996 Aug;122(8):2427–2435. doi: 10.1242/dev.122.8.2427. [DOI] [PubMed] [Google Scholar]
- Cox W. G., Hemmati-Brivanlou A. Caudalization of neural fate by tissue recombination and bFGF. Development. 1995 Dec;121(12):4349–4358. doi: 10.1242/dev.121.12.4349. [DOI] [PubMed] [Google Scholar]
- Dick M. H., Buss L. W. A PCR-based survey of homeobox genes in Ctenodrilus serratus (Annelida: Polychaeta). Mol Phylogenet Evol. 1994 Jun;3(2):146–158. doi: 10.1006/mpev.1994.1017. [DOI] [PubMed] [Google Scholar]
- Epstein M., Pillemer G., Yelin R., Yisraeli J. K., Fainsod A. Patterning of the embryo along the anterior-posterior axis: the role of the caudal genes. Development. 1997 Oct;124(19):3805–3814. doi: 10.1242/dev.124.19.3805. [DOI] [PubMed] [Google Scholar]
- Gamer L. W., Wright C. V. Murine Cdx-4 bears striking similarities to the Drosophila caudal gene in its homeodomain sequence and early expression pattern. Mech Dev. 1993 Sep;43(1):71–81. doi: 10.1016/0925-4773(93)90024-r. [DOI] [PubMed] [Google Scholar]
- Godsave S., Dekker E. J., Holling T., Pannese M., Boncinelli E., Durston A. Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm. Dev Biol. 1994 Dec;166(2):465–476. doi: 10.1006/dbio.1994.1330. [DOI] [PubMed] [Google Scholar]
- Green J. B., New H. V., Smith J. C. Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell. 1992 Nov 27;71(5):731–739. doi: 10.1016/0092-8674(92)90550-v. [DOI] [PubMed] [Google Scholar]
- Hemmati-Brivanlou A., Stewart R. M., Harland R. M. Region-specific neural induction of an engrailed protein by anterior notochord in Xenopus. Science. 1990 Nov 9;250(4982):800–802. doi: 10.1126/science.1978411. [DOI] [PubMed] [Google Scholar]
- Horb M. E., Thomsen G. H. A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation. Development. 1997 May;124(9):1689–1698. doi: 10.1242/dev.124.9.1689. [DOI] [PubMed] [Google Scholar]
- Hunter C. P., Kenyon C. Spatial and temporal controls target pal-1 blastomere-specification activity to a single blastomere lineage in C. elegans embryos. Cell. 1996 Oct 18;87(2):217–226. doi: 10.1016/s0092-8674(00)81340-9. [DOI] [PubMed] [Google Scholar]
- Isaacs H. V., Pownall M. E., Slack J. M. eFGF regulates Xbra expression during Xenopus gastrulation. EMBO J. 1994 Oct 3;13(19):4469–4481. doi: 10.1002/j.1460-2075.1994.tb06769.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isaacs H. V., Tannahill D., Slack J. M. Expression of a novel FGF in the Xenopus embryo. A new candidate inducing factor for mesoderm formation and anteroposterior specification. Development. 1992 Mar;114(3):711–720. doi: 10.1242/dev.114.3.711. [DOI] [PubMed] [Google Scholar]
- Kengaku M., Okamoto H. bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development. 1995 Sep;121(9):3121–3130. doi: 10.1242/dev.121.9.3121. [DOI] [PubMed] [Google Scholar]
- Krieg P. A., Melton D. A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 1984 Sep 25;12(18):7057–7070. doi: 10.1093/nar/12.18.7057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuhn D. T., Turenchalk G., Mack J. A., Packert G., Kornberg T. B. Analysis of the genes involved in organizing the tail segments of the Drosophila melanogaster embryo. Mech Dev. 1995 Sep;53(1):3–13. doi: 10.1016/0925-4773(95)00399-1. [DOI] [PubMed] [Google Scholar]
- Lamb T. M., Harland R. M. Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern. Development. 1995 Nov;121(11):3627–3636. doi: 10.1242/dev.121.11.3627. [DOI] [PubMed] [Google Scholar]
- Macdonald P. M., Struhl G. A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature. 1986 Dec 11;324(6097):537–545. doi: 10.1038/324537a0. [DOI] [PubMed] [Google Scholar]
- Marom K., Shapira E., Fainsod A. The chicken caudal genes establish an anterior-posterior gradient by partially overlapping temporal and spatial patterns of expression. Mech Dev. 1997 Jun;64(1-2):41–52. doi: 10.1016/s0925-4773(97)00043-9. [DOI] [PubMed] [Google Scholar]
- Mlodzik M., Gehring W. J. Expression of the caudal gene in the germ line of Drosophila: formation of an RNA and protein gradient during early embryogenesis. Cell. 1987 Feb 13;48(3):465–478. doi: 10.1016/0092-8674(87)90197-8. [DOI] [PubMed] [Google Scholar]
- Mlodzik M., Gibson G., Gehring W. J. Effects of ectopic expression of caudal during Drosophila development. Development. 1990 Jun;109(2):271–277. doi: 10.1242/dev.109.2.271. [DOI] [PubMed] [Google Scholar]
- Northrop J. L., Kimelman D. Dorsal-ventral differences in Xcad-3 expression in response to FGF-mediated induction in Xenopus. Dev Biol. 1994 Feb;161(2):490–503. doi: 10.1006/dbio.1994.1047. [DOI] [PubMed] [Google Scholar]
- Pannese M., Polo C., Andreazzoli M., Vignali R., Kablar B., Barsacchi G., Boncinelli E. The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development. 1995 Mar;121(3):707–720. doi: 10.1242/dev.121.3.707. [DOI] [PubMed] [Google Scholar]
- Papalopulu N., Kintner C. A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm. Development. 1996 Nov;122(11):3409–3418. doi: 10.1242/dev.122.11.3409. [DOI] [PubMed] [Google Scholar]
- Pownall M. E., Isaacs H. V., Slack J. M. Two phases of Hox gene regulation during early Xenopus development. Curr Biol. 1998 May 21;8(11):673–676. doi: 10.1016/s0960-9822(98)70257-x. [DOI] [PubMed] [Google Scholar]
- Pownall M. E., Tucker A. S., Slack J. M., Isaacs H. V. eFGF, Xcad3 and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus. Development. 1996 Dec;122(12):3881–3892. doi: 10.1242/dev.122.12.3881. [DOI] [PubMed] [Google Scholar]
- Rupp R. A., Snider L., Weintraub H. Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 1994 Jun 1;8(11):1311–1323. doi: 10.1101/gad.8.11.1311. [DOI] [PubMed] [Google Scholar]
- Ryan K., Garrett N., Mitchell A., Gurdon J. B. Eomesodermin, a key early gene in Xenopus mesoderm differentiation. Cell. 1996 Dec 13;87(6):989–1000. doi: 10.1016/s0092-8674(00)81794-8. [DOI] [PubMed] [Google Scholar]
- Schulte-Merker S., Smith J. C. Mesoderm formation in response to Brachyury requires FGF signalling. Curr Biol. 1995 Jan 1;5(1):62–67. doi: 10.1016/s0960-9822(95)00017-0. [DOI] [PubMed] [Google Scholar]
- Sharpe C. R., Gurdon J. B. The induction of anterior and posterior neural genes in Xenopus laevis. Development. 1990 Aug;109(4):765–774. doi: 10.1242/dev.109.4.765. [DOI] [PubMed] [Google Scholar]
- Slack J. M., Tannahill D. Mechanism of anteroposterior axis specification in vertebrates. Lessons from the amphibians. Development. 1992 Feb;114(2):285–302. doi: 10.1242/dev.114.2.285. [DOI] [PubMed] [Google Scholar]
- Smith J. C., Price B. M., Green J. B., Weigel D., Herrmann B. G. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell. 1991 Oct 4;67(1):79–87. doi: 10.1016/0092-8674(91)90573-h. [DOI] [PubMed] [Google Scholar]
- Smith W. C., Harland R. M. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell. 1992 Sep 4;70(5):829–840. doi: 10.1016/0092-8674(92)90316-5. [DOI] [PubMed] [Google Scholar]
- Subramanian V., Meyer B. I., Gruss P. Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell. 1995 Nov 17;83(4):641–653. doi: 10.1016/0092-8674(95)90104-3. [DOI] [PubMed] [Google Scholar]
- Wallingford J. B., Sater A. K., Uzman J. A., Danilchik M. V. Inhibition of morphogenetic movement during Xenopus gastrulation by injected sulfatase: implications for anteroposterior and dorsoventral axis formation. Dev Biol. 1997 Jul 15;187(2):224–235. doi: 10.1006/dbio.1997.8571. [DOI] [PubMed] [Google Scholar]
- Waring D. A., Kenyon C. Regulation of cellular responsiveness to inductive signals in the developing C. elegans nervous system. Nature. 1991 Apr 25;350(6320):712–715. doi: 10.1038/350712a0. [DOI] [PubMed] [Google Scholar]
- Wright C. V., Cho K. W., Fritz A., Bürglin T. R., De Robertis E. M. A Xenopus laevis gene encodes both homeobox-containing and homeobox-less transcripts. EMBO J. 1987 Dec 20;6(13):4083–4094. doi: 10.1002/j.1460-2075.1987.tb02754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu X., Xu P. X., Suzuki Y. A maternal homeobox gene, Bombyx caudal, forms both mRNA and protein concentration gradients spanning anteroposterior axis during gastrulation. Development. 1994 Feb;120(2):277–285. doi: 10.1242/dev.120.2.277. [DOI] [PubMed] [Google Scholar]