Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jul 1;17(13):3512–3520. doi: 10.1093/emboj/17.13.3512

Potent enzyme inhibitors derived from dromedary heavy-chain antibodies.

M Lauwereys 1, M Arbabi Ghahroudi 1, A Desmyter 1, J Kinne 1, W Hölzer 1, E De Genst 1, L Wyns 1, S Muyldermans 1
PMCID: PMC1170688  PMID: 9649422

Abstract

Evidence is provided that dromedary heavy-chain antibodies, in vivo-matured in the absence of light chains, are a unique source of inhibitory antibodies. After immunization of a dromedary with bovine erythrocyte carbonic anhydrase and porcine pancreatic alpha-amylase, it was demonstrated that a considerable amount of heavy-chain antibodies, acting as true competitive inhibitors, circulate in the bloodstream. In contrast, the conventional antibodies apparently do not interact with the enzyme's active site. Next we illustrated that peripheral blood lymphocytes are suitable for one-step cloning of the variable domain fragments in a phage-display vector. By bio-panning, several antigen-specific single-domain fragments are readily isolated for both enzymes. In addition we show that among those isolated fragments active site binders are well represented. When produced as recombinant protein in Escherichia coli, these active site binders appear to be potent enzyme inhibitors when tested in chromogenic assays. The low complexity of the antigen-binding site of these single-domain antibodies composed of only three loops could be valuable for designing smaller synthetic inhibitors.

Full Text

The Full Text of this article is available as a PDF (446.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfthan K., Takkinen K., Sizmann D., Söderlund H., Teeri T. T. Properties of a single-chain antibody containing different linker peptides. Protein Eng. 1995 Jul;8(7):725–731. doi: 10.1093/protein/8.7.725. [DOI] [PubMed] [Google Scholar]
  2. Alkazaz M., Desseaux V., Marchis-Mouren G., Payan F., Forest E., Santimone M. The mechanism of porcine pancreatic alpha-amylase. Kinetic evidence for two additional carbohydrate-binding sites. Eur J Biochem. 1996 Nov 1;241(3):787–796. doi: 10.1111/j.1432-1033.1996.00787.x. [DOI] [PubMed] [Google Scholar]
  3. Arbabi Ghahroudi M., Desmyter A., Wyns L., Hamers R., Muyldermans S. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 1997 Sep 15;414(3):521–526. doi: 10.1016/s0014-5793(97)01062-4. [DOI] [PubMed] [Google Scholar]
  4. Bhat T. N., Bentley G. A., Boulot G., Greene M. I., Tello D., Dall'Acqua W., Souchon H., Schwarz F. P., Mariuzza R. A., Poljak R. J. Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1089–1093. doi: 10.1073/pnas.91.3.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bibi E., Laskov R. Selection and application of antibodies modifying the function of beta-lactamase. Biochim Biophys Acta. 1990 Aug 17;1035(2):237–241. doi: 10.1016/0304-4165(90)90123-e. [DOI] [PubMed] [Google Scholar]
  6. Biocca S., Cattaneo A. Intracellular immunization: antibody targeting to subcellular compartments. Trends Cell Biol. 1995 Jun;5(6):248–252. doi: 10.1016/s0962-8924(00)89019-4. [DOI] [PubMed] [Google Scholar]
  7. Davies J., Riechmann L. Affinity improvement of single antibody VH domains: residues in all three hypervariable regions affect antigen binding. Immunotechnology. 1996 Sep;2(3):169–179. doi: 10.1016/s1380-2933(96)00045-0. [DOI] [PubMed] [Google Scholar]
  8. Davies J., Riechmann L. Antibody VH domains as small recognition units. Biotechnology (N Y) 1995 May;13(5):475–479. doi: 10.1038/nbt0595-475. [DOI] [PubMed] [Google Scholar]
  9. Desmyter A., Transue T. R., Ghahroudi M. A., Thi M. H., Poortmans F., Hamers R., Muyldermans S., Wyns L. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol. 1996 Sep;3(9):803–811. doi: 10.1038/nsb0996-803. [DOI] [PubMed] [Google Scholar]
  10. Fan Z. C., Shan L., Guddat L. W., He X. M., Gray W. R., Raison R. L., Edmundson A. B. Three-dimensional structure of an Fv from a human IgM immunoglobulin. J Mol Biol. 1992 Nov 5;228(1):188–207. doi: 10.1016/0022-2836(92)90500-j. [DOI] [PubMed] [Google Scholar]
  11. Gilles C., Astier J. P., Marchis-Mouren G., Cambillau C., Payan F. Crystal structure of pig pancreatic alpha-amylase isoenzyme II, in complex with the carbohydrate inhibitor acarbose. Eur J Biochem. 1996 Jun 1;238(2):561–569. doi: 10.1111/j.1432-1033.1996.0561z.x. [DOI] [PubMed] [Google Scholar]
  12. Hamers-Casterman C., Atarhouch T., Muyldermans S., Robinson G., Hamers C., Songa E. B., Bendahman N., Hamers R. Naturally occurring antibodies devoid of light chains. Nature. 1993 Jun 3;363(6428):446–448. doi: 10.1038/363446a0. [DOI] [PubMed] [Google Scholar]
  13. Laskowski R. A., Luscombe N. M., Swindells M. B., Thornton J. M. Protein clefts in molecular recognition and function. Protein Sci. 1996 Dec;5(12):2438–2452. doi: 10.1002/pro.5560051206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Martin F., Volpari C., Steinkuhler C., Dimasi N., Brunetti M., Biasiol G., Altamura S., Cortese R., De Francesco R., Sollazzo M. Affinity selection of a camelized V(H) domain antibody inhibitor of hepatitis C virus NS3 protease. Protein Eng. 1997 May;10(5):607–614. doi: 10.1093/protein/10.5.607. [DOI] [PubMed] [Google Scholar]
  15. Muyldermans S., Atarhouch T., Saldanha J., Barbosa J. A., Hamers R. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng. 1994 Sep;7(9):1129–1135. doi: 10.1093/protein/7.9.1129. [DOI] [PubMed] [Google Scholar]
  16. Nguyen V. K., Muyldermans S., Hamers R. The specific variable domain of camel heavy-chain antibodies is encoded in the germline. J Mol Biol. 1998 Jan 23;275(3):413–418. doi: 10.1006/jmbi.1997.1477. [DOI] [PubMed] [Google Scholar]
  17. Novotny J. Protein antigenicity: a thermodynamic approach. Mol Immunol. 1991 Mar;28(3):201–207. doi: 10.1016/0161-5890(91)90062-o. [DOI] [PubMed] [Google Scholar]
  18. Padlan E. A. Anatomy of the antibody molecule. Mol Immunol. 1994 Feb;31(3):169–217. doi: 10.1016/0161-5890(94)90001-9. [DOI] [PubMed] [Google Scholar]
  19. Padlan E. A. X-ray crystallography of antibodies. Adv Protein Chem. 1996;49:57–133. doi: 10.1016/s0065-3233(08)60488-x. [DOI] [PubMed] [Google Scholar]
  20. Pocker Y., Stone J. T. The catalytic versatility of erythrocyte carbonic anhydrase. VII. Kinetic studies of esterase activity and competitive inhibition by substrate analogs. Biochemistry. 1968 Sep;7(9):3021–3031. doi: 10.1021/bi00849a001. [DOI] [PubMed] [Google Scholar]
  21. Sheriff S., Constantine K. L. Redefining the minimal antigen-binding fragment. Nat Struct Biol. 1996 Sep;3(9):733–736. doi: 10.1038/nsb0996-733. [DOI] [PubMed] [Google Scholar]
  22. Skerra A., Plückthun A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science. 1988 May 20;240(4855):1038–1041. doi: 10.1126/science.3285470. [DOI] [PubMed] [Google Scholar]
  23. Spinelli S., Frenken L., Bourgeois D., de Ron L., Bos W., Verrips T., Anguille C., Cambillau C., Tegoni M. The crystal structure of a llama heavy chain variable domain. Nat Struct Biol. 1996 Sep;3(9):752–757. doi: 10.1038/nsb0996-752. [DOI] [PubMed] [Google Scholar]
  24. Vu K. B., Ghahroudi M. A., Wyns L., Muyldermans S. Comparison of llama VH sequences from conventional and heavy chain antibodies. Mol Immunol. 1997 Nov-Dec;34(16-17):1121–1131. doi: 10.1016/s0161-5890(97)00146-6. [DOI] [PubMed] [Google Scholar]
  25. Vértesy L., Oeding V., Bender R., Zepf K., Nesemann G. Tendamistat (HOE 467), a tight-binding alpha-amylase inhibitor from Streptomyces tendae 4158. Isolation, biochemical properties. Eur J Biochem. 1984 Jun 15;141(3):505–512. doi: 10.1111/j.1432-1033.1984.tb08221.x. [DOI] [PubMed] [Google Scholar]
  26. Whitlow M., Bell B. A., Feng S. L., Filpula D., Hardman K. D., Hubert S. L., Rollence M. L., Wood J. F., Schott M. E., Milenic D. E. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng. 1993 Nov;6(8):989–995. doi: 10.1093/protein/6.8.989. [DOI] [PubMed] [Google Scholar]
  27. Winn-Deen E. S., David H., Sigler G., Chavez R. Development of a direct assay for alpha-amylase. Clin Chem. 1988 Oct;34(10):2005–2008. [PubMed] [Google Scholar]
  28. Winter G., Griffiths A. D., Hawkins R. E., Hoogenboom H. R. Making antibodies by phage display technology. Annu Rev Immunol. 1994;12:433–455. doi: 10.1146/annurev.iy.12.040194.002245. [DOI] [PubMed] [Google Scholar]
  29. Wu T. T., Johnson G., Kabat E. A. Length distribution of CDRH3 in antibodies. Proteins. 1993 May;16(1):1–7. doi: 10.1002/prot.340160102. [DOI] [PubMed] [Google Scholar]
  30. Wuebbens M. W., Roush E. D., Decastro C. M., Fierke C. A. Cloning, sequencing, and recombinant expression of the porcine inhibitor of carbonic anhydrase: a novel member of the transferrin family. Biochemistry. 1997 Apr 8;36(14):4327–4336. doi: 10.1021/bi9627424. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES