Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jul 1;17(13):3534–3541. doi: 10.1093/emboj/17.13.3534

Direct link between cytokine activity and a catalytic site for macrophage migration inhibitory factor.

M Swope 1, H W Sun 1, P R Blake 1, E Lolis 1
PMCID: PMC1170690  PMID: 9649424

Abstract

Macrophage migration inhibitory factor (MIF) is a secreted protein that activates macrophages, neutrophils and T cells, and is implicated in sepsis, adult respiratory distress syndrome and rheumatoid arthritis. The mechanism of MIF function, however, is unknown. The three-dimensional structure of MIF is unlike that of any other cytokine, but bears striking resemblance to three microbial enzymes, two of which possess an N-terminal proline that serves as a catalytic base. Human MIF also possesses an N-terminal proline (Pro-1) that is invariant among all known homologues. Multiple sequence alignment of these MIF homologues reveals additional invariant residues that span the entire polypeptide but are in close proximity to the N-terminal proline in the folded protein. We find that p-hydroxyphenylpyruvate, a catalytic substrate of MIF, binds to the N-terminal region and interacts with Pro-1. Mutation of Pro-1 to a glycine substantially reduces the catalytic and cytokine activity of MIF. We suggest that the underlying biological activity of MIF may be based on an enzymatic reaction. The identification of the active site should facilitate the development of structure-based inhibitors.

Full Text

The Full Text of this article is available as a PDF (579.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacher M., Metz C. N., Calandra T., Mayer K., Chesney J., Lohoff M., Gemsa D., Donnelly T., Bucala R. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7849–7854. doi: 10.1073/pnas.93.15.7849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernhagen J., Bacher M., Calandra T., Metz C. N., Doty S. B., Donnelly T., Bucala R. An essential role for macrophage migration inhibitory factor in the tuberculin delayed-type hypersensitivity reaction. J Exp Med. 1996 Jan 1;183(1):277–282. doi: 10.1084/jem.183.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernhagen J., Calandra T., Mitchell R. A., Martin S. B., Tracey K. J., Voelter W., Manogue K. R., Cerami A., Bucala R. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature. 1993 Oct 21;365(6448):756–759. doi: 10.1038/365756a0. [DOI] [PubMed] [Google Scholar]
  4. Bernhagen J., Mitchell R. A., Calandra T., Voelter W., Cerami A., Bucala R. Purification, bioactivity, and secondary structure analysis of mouse and human macrophage migration inhibitory factor (MIF). Biochemistry. 1994 Nov 29;33(47):14144–14155. doi: 10.1021/bi00251a025. [DOI] [PubMed] [Google Scholar]
  5. Bloom B. R., Bennett B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science. 1966 Jul 1;153(3731):80–82. doi: 10.1126/science.153.3731.80. [DOI] [PubMed] [Google Scholar]
  6. Calandra T., Bernhagen J., Metz C. N., Spiegel L. A., Bacher M., Donnelly T., Cerami A., Bucala R. MIF as a glucocorticoid-induced modulator of cytokine production. Nature. 1995 Sep 7;377(6544):68–71. doi: 10.1038/377068a0. [DOI] [PubMed] [Google Scholar]
  7. Chaput M., Claes V., Portetelle D., Cludts I., Cravador A., Burny A., Gras H., Tartar A. The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature. 1988 Mar 31;332(6163):454–455. doi: 10.1038/332454a0. [DOI] [PubMed] [Google Scholar]
  8. Chook Y. M., Gray J. V., Ke H., Lipscomb W. N. The monofunctional chorismate mutase from Bacillus subtilis. Structure determination of chorismate mutase and its complexes with a transition state analog and prephenate, and implications for the mechanism of the enzymatic reaction. J Mol Biol. 1994 Jul 29;240(5):476–500. doi: 10.1006/jmbi.1994.1462. [DOI] [PubMed] [Google Scholar]
  9. David J. R. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci U S A. 1966 Jul;56(1):72–77. doi: 10.1073/pnas.56.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Galat A., Rivière S., Bouet F. Purification of macrophage migration inhibitory factor (MIF) from bovine brain cytosol. FEBS Lett. 1993 Mar 22;319(3):233–236. doi: 10.1016/0014-5793(93)80553-7. [DOI] [PubMed] [Google Scholar]
  12. Guthrie L. A., McPhail L. C., Henson P. M., Johnston R. B., Jr Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. J Exp Med. 1984 Dec 1;160(6):1656–1671. doi: 10.1084/jem.160.6.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoogewerf A. J., Leone J. W., Reardon I. M., Howe W. J., Asa D., Heinrikson R. L., Ledbetter S. R. CXC chemokines connective tissue activating peptide-III and neutrophil activating peptide-2 are heparin/heparan sulfate-degrading enzymes. J Biol Chem. 1995 Feb 17;270(7):3268–3277. doi: 10.1074/jbc.270.7.3268. [DOI] [PubMed] [Google Scholar]
  14. Kameoka J., Tanaka T., Nojima Y., Schlossman S. F., Morimoto C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science. 1993 Jul 23;261(5120):466–469. doi: 10.1126/science.8101391. [DOI] [PubMed] [Google Scholar]
  15. Kato Y., Muto T., Tomura T., Tsumura H., Watarai H., Mikayama T., Ishizaka K., Kuroki R. The crystal structure of human glycosylation-inhibiting factor is a trimeric barrel with three 6-stranded beta-sheets. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3007–3010. doi: 10.1073/pnas.93.7.3007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leiva M. C., Lyttle C. R. Leukocyte chemotactic activity of FKBP and inhibition by FK506. Biochem Biophys Res Commun. 1992 Jul 31;186(2):1178–1183. doi: 10.1016/0006-291x(92)90871-h. [DOI] [PubMed] [Google Scholar]
  17. McNamara M. J., Norton J. A., Nauta R. J., Alexander H. R. Interleukin-1 receptor antibody (IL-1rab) protection and treatment against lethal endotoxemia in mice. J Surg Res. 1993 Apr;54(4):316–321. doi: 10.1006/jsre.1993.1050. [DOI] [PubMed] [Google Scholar]
  18. Mikayama T., Nakano T., Gomi H., Nakagawa Y., Liu Y. C., Sato M., Iwamatsu A., Ishii Y., Weiser W. Y., Ishizaka K. Molecular cloning and functional expression of a cDNA encoding glycosylation-inhibiting factor. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10056–10060. doi: 10.1073/pnas.90.21.10056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mühlhahn P., Bernhagen J., Czisch M., Georgescu J., Renner C., Ross A., Bucala R., Holak T. A. NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF). Protein Sci. 1996 Oct;5(10):2095–2103. doi: 10.1002/pro.5560051016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Okusawa S., Gelfand J. A., Ikejima T., Connolly R. J., Dinarello C. A. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest. 1988 Apr;81(4):1162–1172. doi: 10.1172/JCI113431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rosengren E., Aman P., Thelin S., Hansson C., Ahlfors S., Björk P., Jacobsson L., Rorsman H. The macrophage migration inhibitory factor MIF is a phenylpyruvate tautomerase. FEBS Lett. 1997 Nov 3;417(1):85–88. doi: 10.1016/s0014-5793(97)01261-1. [DOI] [PubMed] [Google Scholar]
  22. Rosengren E., Bucala R., Aman P., Jacobsson L., Odh G., Metz C. N., Rorsman H. The immunoregulatory mediator macrophage migration inhibitory factor (MIF) catalyzes a tautomerization reaction. Mol Med. 1996 Jan;2(1):143–149. [PMC free article] [PubMed] [Google Scholar]
  23. Sherry B., Yarlett N., Strupp A., Cerami A. Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3511–3515. doi: 10.1073/pnas.89.8.3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stivers J. T., Abeygunawardana C., Mildvan A. S., Hajipour G., Whitman C. P. 4-Oxalocrotonate tautomerase: pH dependence of catalysis and pKa values of active site residues. Biochemistry. 1996 Jan 23;35(3):814–823. doi: 10.1021/bi9510789. [DOI] [PubMed] [Google Scholar]
  25. Subramanya H. S., Roper D. I., Dauter Z., Dodson E. J., Davies G. J., Wilson K. S., Wigley D. B. Enzymatic ketonization of 2-hydroxymuconate: specificity and mechanism investigated by the crystal structures of two isomerases. Biochemistry. 1996 Jan 23;35(3):792–802. doi: 10.1021/bi951732k. [DOI] [PubMed] [Google Scholar]
  26. Sun H. W., Bernhagen J., Bucala R., Lolis E. Crystal structure at 2.6-A resolution of human macrophage migration inhibitory factor. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5191–5196. doi: 10.1073/pnas.93.11.5191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sun H. W., Swope M., Cinquina C., Bedarkar S., Bernhagen J., Bucala R., Lolis E. The subunit structure of human macrophage migration inhibitory factor: evidence for a trimer. Protein Eng. 1996 Aug;9(8):631–635. doi: 10.1093/protein/9.8.631. [DOI] [PubMed] [Google Scholar]
  28. Suzuki M., Sugimoto H., Nakagawa A., Tanaka I., Nishihira J., Sakai M. Crystal structure of the macrophage migration inhibitory factor from rat liver. Nat Struct Biol. 1996 Mar;3(3):259–266. doi: 10.1038/nsb0396-259. [DOI] [PubMed] [Google Scholar]
  29. Tracey K. J., Beutler B., Lowry S. F., Merryweather J., Wolpe S., Milsark I. W., Hariri R. J., Fahey T. J., 3rd, Zentella A., Albert J. D. Shock and tissue injury induced by recombinant human cachectin. Science. 1986 Oct 24;234(4775):470–474. doi: 10.1126/science.3764421. [DOI] [PubMed] [Google Scholar]
  30. Tracey K. J., Fong Y., Hesse D. G., Manogue K. R., Lee A. T., Kuo G. C., Lowry S. F., Cerami A. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987 Dec 17;330(6149):662–664. doi: 10.1038/330662a0. [DOI] [PubMed] [Google Scholar]
  31. Vu T. K., Wheaton V. I., Hung D. T., Charo I., Coughlin S. R. Domains specifying thrombin-receptor interaction. Nature. 1991 Oct 17;353(6345):674–677. doi: 10.1038/353674a0. [DOI] [PubMed] [Google Scholar]
  32. Xu Q., Leiva M. C., Fischkoff S. A., Handschumacher R. E., Lyttle C. R. Leukocyte chemotactic activity of cyclophilin. J Biol Chem. 1992 Jun 15;267(17):11968–11971. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES